Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35409290

RESUMEN

For the treatment of large bone defects, the commonly used technique of autologous bone grafting presents several drawbacks and limitations. With the discovery of the bone-inducing capabilities of bone morphogenetic protein 2 (BMP2), several delivery techniques were developed and translated to clinical applications. Implantation of scaffolds containing adsorbed BMP2 showed promising results. However, off-label use of this protein-scaffold combination caused severe complications due to an uncontrolled release of the growth factor, which has to be applied in supraphysiological doses in order to induce bone formation. Here, we propose an alternative strategy that focuses on the covalent immobilization of an engineered BMP2 variant to biocompatible scaffolds. The new BMP2 variant harbors an artificial amino acid with a specific functional group, allowing a site-directed covalent scaffold functionalization. The introduced artificial amino acid does not alter BMP2's bioactivity in vitro. When applied in vivo, the covalently coupled BMP2 variant induces the formation of bone tissue characterized by a structurally different morphology compared to that induced by the same scaffold containing ab-/adsorbed wild-type BMP2. Our results clearly show that this innovative technique comprises translational potential for the development of novel osteoinductive materials, improving safety for patients and reducing costs.


Asunto(s)
Proteína Morfogenética Ósea 2 , Sustitutos de Huesos , Aminoácidos , Proteína Morfogenética Ósea 2/farmacología , Regeneración Ósea , Colágeno , Humanos , Microesferas , Osteogénesis/genética , Andamios del Tejido/química
2.
Mater Sci Eng C Mater Biol Appl ; 119: 111410, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321577

RESUMEN

Hybrid superparamagnetic microspheres with bone-like composition, previously developed by a bio-inspired assembling/mineralization process, are evaluated for their ability to uptake and deliver recombinant human bone morphogenetic protein-2 (rhBMP-2) in therapeutically-relevant doses along with prolonged release profiles. The comparison with hybrid non-magnetic and with non-mineralized microspheres highlights the role of nanocrystalline, nanosize mineral phases when they exhibit surface charged groups enabling the chemical linking with the growth factor and thus moderating the release kinetics. All the microspheres show excellent osteogenic ability with human mesenchymal stem cells whereas the hybrid mineralized ones show a slow and sustained release of rhBMP-2 along 14 days of soaking into cell culture medium with substantially bioactive effect, as reported by assay with C2C12 BRE-Luc cell line. It is also shown that the release extent can be modulated by the application of pulsed electromagnetic field, thus showing the potential of remote controlling the bioactivity of the new micro-devices which is promising for future application of hybrid biomimetic microspheres in precisely designed and personalized therapies.


Asunto(s)
Durapatita , Hierro , Proteína Morfogenética Ósea 2 , Regeneración Ósea , Humanos , Microesferas , Osteogénesis , Proteínas Recombinantes , Factor de Crecimiento Transformador beta
3.
Biomaterials ; 267: 120449, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33129188

RESUMEN

The clinical success rate of islet transplantation, namely independence from insulin injections, is limited by factors that lead to graft failure, including inflammation, acute ischemia, acute phase response, and insufficient vascularization. The ischemia and insufficient vascularization both lead to high levels of oxidative stress, which are further aggravated by islet encapsulation, inflammation, and undesirable cell-biomaterial interactions. To identify biomaterials that would not further increase damaging oxidative stress levels and that are also suitable for manufacturing a beta cell encapsulation device, we studied five clinically approved polymers for their effect on oxidative stress and islet (alpha and beta cell) function. We found that 300 poly(ethylene oxide terephthalate) 55/poly(butylene terephthalate) 45 (PEOT/PBT300) was more resistant to breakage and more elastic than other biomaterials, which is important for its immunoprotective function. In addition, it did not induce oxidative stress or reduce viability in the MIN6 beta cell line, and even promoted protective endogenous antioxidant expression over 7 days. Importantly, PEOT/PBT300 is one of the biomaterials we studied that did not interfere with insulin secretion in human islets.


Asunto(s)
Células Secretoras de Insulina , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Materiales Biocompatibles/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Estrés Oxidativo
4.
Artículo en Inglés | MEDLINE | ID: mdl-30881954

RESUMEN

The use of biomaterials and signaling molecules to induce bone formation is a promising approach in the field of bone tissue engineering. Follistatin (FST) is a glycoprotein able to bind irreversibly to activin A, a protein that has been reported to inhibit bone formation. We investigated the effect of FST in critical processes for bone repair, such as cell recruitment, osteogenesis and vascularization, and ultimately its use for bone tissue engineering. In vitro, FST promoted mesenchymal stem cell (MSC) and endothelial cell (EC) migration as well as essential steps in the formation and expansion of the vasculature such as EC tube-formation and sprouting. FST did not enhance osteogenic differentiation of MSCs, but increased committed osteoblast mineralization. In vivo, FST was loaded in an in situ gelling formulation made by alginate and recombinant collagen-based peptide microspheres and implanted in a rat calvarial defect model. Two FST variants (FST288 and FST315) with major differences in their affinity to cell-surface proteoglycans, which may influence their effect upon in vivo bone repair, were tested. In vitro, most of the loaded FST315 was released over 4 weeks, contrary to FST288, which was mostly retained in the biomaterial. However, none of the FST variants improved in vivo bone healing compared to control. These results demonstrate that FST enhances crucial processes needed for bone repair. Further studies need to investigate the optimal FST carrier for bone regeneration.

6.
Adv Healthc Mater ; 7(21): e1800507, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30230271

RESUMEN

New solutions for large bone defect repair are needed. Here, in situ gelling slow release systems for bone induction are assessed. Collagen-I based Recombinant Peptide (RCP) microspheres (MSs) are produced and used as a carrier for bone morphogenetic protein 2 (BMP-2). The RCP-MSs are dispersed in three hydrogels: high mannuronate (SLM) alginate, high guluronate (SLG) alginate, and thermoresponsive hyaluronan derivative (HApN). HApN+RCP-MS forms a gel structure at 32 ºC or above, while SLM+RCP-MS and SLG+RCP-MS respond to shear stress displaying thixotropic behavior. Alginate formulations show sustained release of BMP-2, while there is minimal release from HApN. These formulations are injected subcutaneously in rats. SLM+RCP-MS and SLG+RCP-MS loaded with BMP-2 induce ectopic bone formation as revealed by X-ray tomography and histology, whereas HApN+RCP-MS do not. Vascularization occurs within all the formulations studied and is significantly higher in SLG+MS and HApN+RCP-MS than in SLM+RCP-MS. Inflammation (based on macrophage subset staining) decreases over time in both alginate groups, but increases in the HApN+RCP-MS condition. It is shown that a balance between inflammatory cell infiltration, BMP-2 release, and vascularization, achieved in the SLG+RCP-MS alginate condition, is optimal for the induction of de novo bone formation.


Asunto(s)
Colágeno/química , Hidrogeles/química , Microesferas , Alginatos/química , Animales , Regeneración Ósea/fisiología , Ácido Hialurónico/química , Masculino , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tomografía por Rayos X
7.
Mater Sci Eng C Mater Biol Appl ; 84: 271-280, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29519439

RESUMEN

Bone morphogenetic protein-2 (BMP-2) is a powerful osteoinductive protein; however, there is a need for the development of a safe and efficient BMP-2 release system for bone regeneration therapies. Recombinant extracellular matrix proteins are promising next generation biomaterials since the proteins are well-defined, reproducible and can be tailored for specific applications. In this study, we have developed a novel and versatile BMP-2 delivery system using microspheres from a recombinant protein based on human collagen I (RCP). In general, a two-phase release pattern was observed while the majority of BMP-2 was retained in the microspheres for at least two weeks. Among different parameters studied, the crosslinking and the size of the RCP microspheres changed the in vitro BMP-2 release kinetics significantly. Increasing the chemical crosslinking (hexamethylene diisocyanide) degree decreased the amount of initial burst release (24h) from 23% to 17%. Crosslinking by dehydrothermal treatment further decreased the burst release to 11%. Interestingly, the 50 and 72µm-sized spheres showed a significant decrease in the burst release compared to 207-µm sized spheres. Very importantly, using a reporter cell line, the released BMP-2 was shown to be bioactive. SPR data showed that N-terminal sequence of BMP-2 was important for the binding and retention of BMP-2 and suggested the presence of a specific binding epitope on RCP (KD: 1.2nM). This study demonstrated that the presented RCP microspheres are promising versatile BMP-2 delivery vehicles.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Colágeno Tipo I/metabolismo , Microesferas , Animales , Proteína Morfogenética Ósea 2/análisis , Proteína Morfogenética Ósea 2/química , Línea Celular , Colágeno Tipo I/química , Colágeno Tipo I/genética , Portadores de Fármacos/química , Liberación de Fármacos , Ensayo de Inmunoadsorción Enzimática , Humanos , Ratones , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Resonancia por Plasmón de Superficie
8.
ACS Appl Mater Interfaces ; 8(18): 11280-7, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27097153

RESUMEN

Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.


Asunto(s)
Nanofibras , Nanosferas , Clatrina , Endocitosis , Humanos , Oligonucleótidos , Péptidos
9.
Mol Pharm ; 12(5): 1584-91, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25828697

RESUMEN

A drug delivery system designed specifically for oligonucleotide therapeutics can ameliorate the problems associated with the in vivo delivery of these molecules. The internalization of free oligonucleotides is challenging, and cytotoxicity is the main obstacle for current transfection vehicles. To develop nontoxic delivery vehicles for efficient transfection of oligonucleotides, we designed a self-assembling peptide amphiphile (PA) nanosphere delivery system decorated with cell penetrating peptides (CPPs) containing multiple arginine residues (R4 and R8), and a cell surface binding peptide (KRSR), and report the efficiency of this system in delivering G-3129, a Bcl-2 antisense oligonucleotide (AON). PA/AON (peptide amphiphile/antisense oligonucleotide) complexes were characterized with regards to their size and secondary structure, and their cellular internalization efficiencies were evaluated. The effect of the number of arginine residues on the cellular internalization was investigated by both flow cytometry and confocal imaging, and the results revealed that uptake efficiency improved as the number of arginines in the sequence increased. The combined effect of cell penetration and surface binding property on the cellular internalization and its uptake mechanism was also evaluated by mixing R8-PA and KRSR-PA. R8 and R8/KRSR decorated PAs were found to drastically increase the internalization of AONs compared to nonbioactive PA control. Overall, the KRSR-decorated self-assembled PA nanospheres were demonstrated to be noncytotoxic delivery vectors with high transfection rates and may serve as a promising delivery system for AONs.


Asunto(s)
Péptidos de Penetración Celular/química , Nanosferas/química , Oligonucleótidos Antisentido/química , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/efectos adversos , Dicroismo Circular , Citometría de Flujo , Humanos , Células MCF-7 , Microscopía Confocal , Microscopía Electrónica de Transmisión
10.
J Mater Chem B ; 2(15): 2168-2174, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32261500

RESUMEN

The surface of mesoporous silica nanoparticles (MSNs) has been modified for enhancing their cellular uptake, cell targeting, bioimaging, and controlled drug release. For this purpose, covalent anchorage on the silica surface was predominantly exploited with a wide range of bioactive molecules. Here, we describe a facile self-assembly method to prepare a hybrid peptide silica system composed of octyl-modified mesoporous silica nanoparticles (MSNs) and peptide amphiphiles (PAs). The hydrophobic organosilane surface of mesoporous silica was coated with amphiphilic peptide molecules. The peptide functionalized particles exhibited good cyto-compatibility with vascular smooth muscle and vascular endothelial cells. The peptide coating also improved the cellular uptake of particles up to 6.3 fold, which is promising for the development of highly efficient MSN based theranostic agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...