Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
bioRxiv ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38645196

Neuronal reconstruction-a process that transforms image volumes into 3D geometries and skeletons of cells-bottlenecks the study of brain function, connectomics and pathology. Domain scientists need exact and complete segmentations to study subtle topological differences. Existing methods are diskbound, dense-access, coupled, single-threaded, algorithmically unscalable and require manual cropping of small windows and proofreading of skeletons due to low topological accuracy. Designing a data-intensive parallel solution suited to a neurons' shape, topology and far-ranging connectivity is particularly challenging due to I/O and load-balance, yet by abstracting these vision tasks into strategically ordered specializations of search, we progressively lower memory by 4 orders of magnitude. This enables 1 mouse brain to be fully processed in-memory on a single server, at 67× the scale with 870× less memory while having 78% higher automated yield than APP2, the previous state of the art in performant reconstruction.

2.
eNeuro ; 11(5)2024 May.
Article En | MEDLINE | ID: mdl-38641413

The mechanisms by which brain insults lead to subsequent epilepsy remain unclear. Insults including trauma, stroke, infections, and long seizures (status epilepticus, SE) increase the nuclear expression and chromatin binding of the neuron-restrictive silencing factor/RE-1 silencing transcription factor (NRSF/REST). REST/NRSF orchestrates major disruption of the expression of key neuronal genes, including ion channels and neurotransmitter receptors, potentially contributing to epileptogenesis. Accordingly, transient interference with REST/NRSF chromatin binding after an epilepsy-provoking SE suppressed spontaneous seizures for the 12 d duration of a prior study. However, whether the onset of epileptogenesis was suppressed or only delayed has remained unresolved. The current experiments determined if transient interference with REST/NRSF chromatin binding prevented epileptogenesis enduringly or, alternatively, slowed epilepsy onset. Epileptogenesis was elicited in adult male rats via systemic kainic acid-induced SE (KA-SE). We then determined if decoy, NRSF-binding-motif oligodeoxynucleotides (NRSE-ODNs), given twice following KA-SE (1) prevented REST/NRSF binding to chromatin, using chromatin immunoprecipitation, or (2) prevented the onset of spontaneous seizures, measured with chronic digital video-electroencephalogram. Blocking NRSF function transiently after KA-SE significantly lengthened the latent period to a first spontaneous seizure. Whereas this intervention did not influence the duration and severity of spontaneous seizures, total seizure number and seizure burden were lower in the NRSE-ODN compared with scrambled-ODN cohorts. Transient interference with REST/NRSF function after KA-SE delays and moderately attenuates insult-related hippocampal epilepsy, but does not abolish it. Thus, the anticonvulsant and antiepileptogenic actions of NRSF are but one of the multifactorial mechanisms generating epilepsy in the adult brain.


Chromatin , Kainic Acid , Rats, Sprague-Dawley , Animals , Male , Chromatin/metabolism , Kainic Acid/pharmacology , Repressor Proteins/metabolism , Repressor Proteins/genetics , Status Epilepticus/metabolism , Disease Models, Animal , Hippocampus/metabolism , Rats , Epilepsy/metabolism
3.
Nature ; 598(7879): 188-194, 2021 10.
Article En | MEDLINE | ID: mdl-34616074

The cortico-basal ganglia-thalamo-cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative1-4. Yet this three-channel view cannot explain the myriad functions of the basal ganglia. We previously subdivided the dorsal striatum into 29 functional domains on the basis of the topography of inputs from the entire cortex5. Here we map the multi-synaptic output pathways of these striatal domains through the globus pallidus external part (GPe), substantia nigra reticular part (SNr), thalamic nuclei and cortex. Accordingly, we identify 14 SNr and 36 GPe domains and a direct cortico-SNr projection. The striatonigral direct pathway displays a greater convergence of striatal inputs than the more parallel striatopallidal indirect pathway, although direct and indirect pathways originating from the same striatal domain ultimately converge onto the same postsynaptic SNr neurons. Following the SNr outputs, we delineate six domains in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify six parallel cortico-basal ganglia-thalamic subnetworks that sequentially transduce specific subsets of cortical information through every elemental node of the cortico-basal ganglia-thalamic loop. Thalamic domains relay this output back to the originating corticostriatal neurons of each subnetwork in a bona fide closed loop.


Basal Ganglia/cytology , Cerebral Cortex/cytology , Neural Pathways , Neurons/cytology , Thalamus/cytology , Animals , Basal Ganglia/anatomy & histology , Cerebral Cortex/anatomy & histology , Male , Mice , Mice, Inbred C57BL , Thalamus/anatomy & histology
4.
Nat Commun ; 12(1): 4004, 2021 06 28.
Article En | MEDLINE | ID: mdl-34183678

The superior colliculus (SC) receives diverse and robust cortical inputs to drive a range of cognitive and sensorimotor behaviors. However, it remains unclear how descending cortical input arising from higher-order associative areas coordinate with SC sensorimotor networks to influence its outputs. Here, we construct a comprehensive map of all cortico-tectal projections and identify four collicular zones with differential cortical inputs: medial (SC.m), centromedial (SC.cm), centrolateral (SC.cl) and lateral (SC.l). Further, we delineate the distinctive brain-wide input/output organization of each collicular zone, assemble multiple parallel cortico-tecto-thalamic subnetworks, and identify the somatotopic map in the SC that displays distinguishable spatial properties from the somatotopic maps in the neocortex and basal ganglia. Finally, we characterize interactions between those cortico-tecto-thalamic and cortico-basal ganglia-thalamic subnetworks. This study provides a structural basis for understanding how SC is involved in integrating different sensory modalities, translating sensory information to motor command, and coordinating different actions in goal-directed behaviors.


Superior Colliculi/anatomy & histology , Superior Colliculi/physiology , Vision, Ocular/physiology , Visual Perception/physiology , Animals , Basal Ganglia/physiology , Cognition/physiology , Male , Mice , Mice, Inbred C57BL , Visual Pathways
5.
eNeuro ; 4(1)2017.
Article En | MEDLINE | ID: mdl-28197553

The mechanisms by which brain insults lead to subsequent epilepsy remain unclear. Insults, including trauma, stroke, tumors, infections, and long seizures [status epilepticus (SE)], create a neuronal state of increased metabolic demand or decreased energy supply. Neurons express molecules that monitor their metabolic state, including sirtuins (Sirts). Sirtuins deacetylate cytoplasmic proteins and nuclear histones, and their epigenetic modulation of the chromatin governs the expression of many genes, influencing neuronal properties. Thus, sirtuins are poised to enduringly modulate neuronal properties following SE, potentially contributing to epileptogenesis, a hypothesis supported by the epilepsy-attenuating effects of blocking a downstream target of Sirt1, Neuron-Restrictive Silencer Factor (NRSF) also know as REST (RE1-Silencing Transcription factor). Here we used an adult male rat model of epileptogenesis provoked by kainic acid-induced SE (KA-SE). We assessed KA-SE-provoked Sirt1 activity, infused a Sirt1 inhibitor (EX-527) after KA-SE, and examined for epileptogenesis using continuous digital video-EEG. Sirt1 activity, measured using chromatin immunoprecipitation for Sirt1 binding at a target gene, increased rapidly after SE. Post hoc infusion of the Sirt1 inhibitor prevented Sirt1-mediated repression of a target gene. Blocking Sirt1 activity transiently after KA-SE did not significantly influence the time- course and all of the parameters of epilepsy development. Specifically, latency to first seizure and seizure number, duration, and severity (using the Racine scale and EEG measures) as well as the frequency and duration of interictal spike series, were all unchanged. KA-SE provoked a robust inflammatory response and modest cell loss, yet neither was altered by blocking Sirt1. In conclusion, blocking Sirt1 activity after KA-SE does not abrogate epilepsy development, suggesting that the mechanisms of such acquired epileptogenesis are independent of Sirt1 function.


Seizures/metabolism , Sirtuin 1/metabolism , Status Epilepticus/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Carbazoles/pharmacology , Cell Count , Central Nervous System Agents/pharmacology , Chromatin Immunoprecipitation , Disease Models, Animal , Electroencephalography , Immunohistochemistry , Inflammation/metabolism , Kainic Acid , Male , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Seizures/pathology , Severity of Illness Index , Sirtuin 1/antagonists & inhibitors , Status Epilepticus/pathology , Video Recording
...