Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 607(7917): 86-90, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794270

RESUMEN

Nitrogen (N2) fixation by nature, which is a crucial process for the supply of bio-available forms of nitrogen, is performed by nitrogenase. This enzyme uses a unique transition-metal-sulfur-carbon cluster as its active-site co-factor ([(R-homocitrate)MoFe7S9C], FeMoco)1,2, and the sulfur-surrounded iron (Fe) atoms have been postulated to capture and reduce N2 (refs. 3-6). Although there are a few examples of synthetic counterparts of the FeMoco, metal-sulfur cluster, which have shown binding of N2 (refs. 7-9), the reduction of N2 by any synthetic metal-sulfur cluster or by the extracted form of FeMoco10 has remained elusive, despite nearly 50 years of research. Here we show that the Fe atoms in our synthetic [Mo3S4Fe] cubes11,12 can capture a N2 molecule and catalyse N2 silylation to form N(SiMe3)3 under treatment with excess sodium and trimethylsilyl chloride. These results exemplify the catalytic silylation of N2 by a synthetic metal-sulfur cluster and demonstrate the N2-reduction capability of Fe atoms in a sulfur-rich environment, which is reminiscent of the ability of FeMoco to bind and activate N2.


Asunto(s)
Hierro , Molibdeno , Nitrógeno , Nitrogenasa , Azufre , Biocatálisis , Carbono , Hierro/química , Hierro/metabolismo , Molibdeno/química , Molibdeno/metabolismo , Nitrógeno/química , Nitrógeno/metabolismo , Nitrogenasa/química , Nitrogenasa/metabolismo , Sodio , Azufre/química , Azufre/metabolismo , Ácidos Tricarboxílicos , Compuestos de Trimetilsililo
2.
Inorg Chem ; 58(8): 5230-5240, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30900879

RESUMEN

Triangular [Mo3S4] clusters are known to serve as platforms to accommodate a metal atom M, furnishing cubic [Mo3S4M] clusters. In this study, three [Mo3S4] clusters supported by η5-cyclopentadienyl (CpR) ligands, [CpR3Mo3S4]+ (CpR = C5Me4SiMe3, C5Me4SiEt3, and C5Me4H), were synthesized via half-sandwich molybdenum chlorides CpRMoCl4. In the cyclic voltammogram of the [Mo3S4] cluster having C5Me4H ligands, a weak feature appeared in addition to the [CpR3Mo3S4]0/- redox process, indicating the interaction between [CpR3Mo3S4]- and the [NnBu4] cation of the electrolyte, while such a feature was less significant for the C5Me4SiR3 variants. The [Mo3S4] clusters with bulky C5Me4SiR3 ligands were successfully applied as platforms to accommodate an Fe atom to furnish cubic [Mo3S4Fe] clusters. On the other hand, the corresponding reactions of the less bulky C5Me4H analogue gave complex mixtures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...