Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Eur Biophys J ; 53(3): 159-170, 2024 Apr.
Article En | MEDLINE | ID: mdl-38493432

Protein-protein interactions (PPI) have emerged as valuable targets in medicinal chemistry due to their key roles in important biological processes. The modulation of PPI by small peptides offers an excellent opportunity to develop drugs against human diseases. Here, we exploited the knowledge of the binding interface of the IgG-protein G complex (PDB:1FCC) for designing peptides that can inhibit these complexes. Herein, we have designed several closely related peptides, and the comparison of results from experiments and computational studies indicated that all the peptides bind close to the expected binding site on IgG and the complexes are stable. A minimal sequence consisting of 11 amino acids (P5) with binding constants in the range of 100 nM was identified. We propose that the main affinity differences across the series of peptides arose from the presence of polar amino acid residues. Further, the molecular dynamic studies helped to understand the dynamic properties of complexes in terms of flexibility of residues and structural stability at the interface. The ability of P5 to compete with the protein G in recognizing IgG can help in the detection and purification of antibodies. Further, it can serve as a versatile tool for a better understanding of protein-protein interactions.


Amino Acids , Peptides , Humans , Peptides/chemistry , Amino Acid Sequence , Binding Sites , Amino Acids/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Protein Binding , Thermodynamics
2.
ACS Omega ; 8(5): 4554-4565, 2023 Feb 07.
Article En | MEDLINE | ID: mdl-36777612

In biological systems, the unprompted assembly of DNA molecules by cationic ligands into condensed structures is ubiquitous. The ability of ligands to provoke DNA packaging is crucial to the molecular organization and functional control of DNA, yet their underlined physical roles have remained elusive. Here, we have examined the DNA condensation mechanism of four cationic ligands, including their primary DNA-binding modes through extensive biophysical studies. We observed contrasting changes for these ligands binding to poly[dGdC]:poly[dGdC] (GC-DNA) and poly[dAdT]:poly[dAdT] (AT-DNA). Based on a CD spectroscopic study, it was confirmed that only GC-DNA undergoes B- to Ψ-type DNA transformation in the presence of ligands. In the fluorescence displacement assay (FDA), the ability of ligands to displace GC-DNA-bound EtBr follows the order: protamine21+ > cohex3+ > Ni2+ > spermine4+, which indicates that there is no direct correlation between the ligand charge and its ability to displace the drug from the DNA, indicating that GC-DNA condensation is not just influenced by electrostatic interaction but ligand-specific interactions may also have played a crucial role. Furthermore, the detailed ITC-binding studies suggested that DNA-ligand interactions are generally driven by unfavorable enthalpy and favorable entropy. The correlations from various studies insinuate that cationic ligands show major groove binding as one of the preferred binding modes during GC-DNA condensation.

3.
ACS Omega ; 7(45): 41044-41057, 2022 Nov 15.
Article En | MEDLINE | ID: mdl-36406544

The insulin-protamine interaction is at the core of the mode of action in many insulin formulations (Zn + insulin + protamine) and to treat diabetes, in which protamine is added to the stable form of hexameric insulin (Zn-insulin). However, due to the unavailability of quantitative data and a high-resolution structure, the binding mechanism of the insulin-protamine complex remains unknown. In this study, it was observed that Zn-insulin experiences destabilization as observed by the loss of secondary structure in circular dichroism (CD), and reduction in thermal stability in melting study, upon protamine binding. In isothermal titration calorimetry (ITC), it was found that the interactions were mostly enthalpically driven. This is in line with the positive ΔC m value (+880 cal mol-1), indicating the role of hydrophilic interactions in the complex formation, with the exposure of hydrophobic residues to the solvent, which was firmly supported by the 8-anilino-1-naphthalene sulfonate (ANS) binding study. The stoichiometry (N) value in ITC suggests the multiple insulin molecules binding to the protamine chain, which is consistent with the picture of the condensation of insulin in the presence of protamine. Atomic force microscopy (AFM) suggested the formation of a heterogeneous Zn-insulin-protamine complex. In fluorescence, Zn-insulin experiences strong Tyr quenching, suggesting that the location of the protamine-binding site is near Tyr, which is also supported by the molecular docking study. Since Tyr is critical in the stabilization of insulin self-assembly, its interaction with protamine may impair insulin's self-association ability and thermodynamic stability while at the same time promoting its flexible conformation desired for better biological activity.

4.
Molecules ; 27(5)2022 Feb 23.
Article En | MEDLINE | ID: mdl-35268608

Hepatitis E virus (HEV) is an understudied pathogen that causes infection through fecal contaminated drinking water and is prominently found in South Asian countries. The virus affects ~20 million people annually, leading to ~60,000 infections per year. The positive-stranded RNA genome of the HEV genotype 1 has four conserved open reading frames (ORFs), of which ORF1 encodes a polyprotein of 180 kDa in size, which is processed into four non-structural enzymes: methyltransferase (MTase), papain-like cysteine protease, RNA-dependent RNA polymerase, and RNA helicase. MTase is known to methylate guanosine triphosphate at the 5'-end of viral RNA, thereby preventing its degradation by host nucleases. In the present study, we cloned, expressed, and purified MTase spanning 33-353 amino acids of HEV genotype 1. The activity of the purified enzyme and the conformational changes were established through biochemical and biophysical studies. The binding affinity of MTase with magnesium ions (Mg2+) was studied by isothermal calorimetry (ITC), microscale thermophoresis (MST), far-UV CD analysis and, fluorescence quenching. In summary, a short stretch of nucleotides has been cloned, coding for the HEV MTase of 37 kDa, which binds Mg2+ and modulate its activity. The chelation of magnesium reversed the changes, confirming its role in enzyme activity.


Hepatitis E virus
5.
Langmuir ; 37(31): 9385-9395, 2021 08 10.
Article En | MEDLINE | ID: mdl-34313447

The real motivation in the present work is to tune the synthesis variables that can result in a highly fluorescent and stable DNA copper nanocluster (CuNC) and also to understand the intricate mechanism behind this process. Here, carefully optimized concentrations of various reactants enabled the creation of a DNA-encapsulated CuNC for AT-DNA, displaying a size of <1.0 nm as confirmed by transmission electron microscopy and dynamic light scattering. The extremely small size of the AT-DNACuNC supports the discrete electronic transitions, also characterized by an exceptionally strong negative circular dichroism (CD) band around 350 nm, whose intensity is well correlated with the observed strong fluorescence emission intensity. This remarkably strong CD can open new applications in the detection and quantification of a specific DNACuNC. Further, time-dependent fluorescence analysis suggested stronger photostabilization of these DNACuNCs. The simulation study, based on Cu ion distribution, explained how AT-DNA is a better candidate for NC formation than GC-DNA. In conclusion, the better-tuned synthesis procedure has resulted in a highly compact, well-defined three-dimensional conformation that promotes a more favorable microenvironment to sequester a DNA-based CuNC with high brightness and outstanding photostability.


Copper , Metal Nanoparticles , DNA , Fluorescent Dyes , Spectrometry, Fluorescence
6.
Biol Trace Elem Res ; 199(8): 3147-3158, 2021 Aug.
Article En | MEDLINE | ID: mdl-33052530

Zinc uptake regulator (Zur) is a negative transcriptional regulator of bacteria that belongs to the FUR superfamily of proteins and regulates zinc (Zn) homeostasis under extreme Zn conditions. The Zur protein of Bacillus anthracis (BaZur) was though characterized previously, but the residues of this transcriptional regulator, crucial for binding to the consensus Zur box in the cognate DNA, remain unexplored. In this study, we reveal the essential residues of the protein that govern the specific interaction with the cognate DNA, through mutational and binding studies. In silico predicted model of the BaZur protein with the promoter region of one of the regulon candidates was utilized to identify specific residues of the N-terminal domain (NTD), constituting the DNA-binding recognition helix. Our results suggest that two phenylalanine residues, a non-polar aliphatic leucine and a positively charged arginine residue of NTD, are predominantly involved in DNA binding of BaZur. Among these, the arginine residue (Arg58) is conserved among all the Zur proteins and the two Phe residues, namely Phe53 and Phe63, are conserved in the Zur proteins of Staphylococcus aureus and Listeria monocytogenes. Taken together, the current study represents an in-depth investigation into the key DNA-binding residues involved in the BaZur-DNA interaction.


Bacillus anthracis , Gene Expression Regulation, Bacterial , Bacillus anthracis/genetics , Bacillus anthracis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA , Zinc/metabolism
7.
Int J Mol Sci ; 21(17)2020 Aug 26.
Article En | MEDLINE | ID: mdl-32859024

Apicomplexan parasites, through their motor machinery, produce the required propulsive force critical for host cell-entry. The conserved components of this so-called glideosome machinery are myosin A and myosin A Tail Interacting Protein (MTIP). MTIP tethers myosin A to the inner membrane complex of the parasite through 20 amino acid-long C-terminal end of myosin A that makes direct contacts with MTIP, allowing the invasion of Plasmodium falciparum in erythrocytes. Here, we discovered through screening a peptide library, a de-novo peptide ZA1 that binds the myosin A tail domain. We demonstrated that ZA1 bound strongly to myosin A tail and was able to disrupt the native myosin A tail MTIP complex both in vitro and in vivo. We then showed that a shortened peptide derived from ZA1, named ZA1S, was able to bind myosin A and block parasite invasion. Overall, our study identified a novel anti-malarial peptide that could be used in combination with other antimalarials for blocking the invasion of Plasmodium falciparum.


Antimalarials/pharmacology , Membrane Proteins/metabolism , Nonmuscle Myosin Type IIA/metabolism , Peptides/pharmacology , Plasmodium falciparum/growth & development , Amino Acid Motifs , Antimalarials/chemistry , Binding Sites , Drug Evaluation, Preclinical , Erythrocytes/parasitology , High-Throughput Screening Assays , Humans , Membrane Proteins/chemistry , Models, Molecular , Multiprotein Complexes/drug effects , Nonmuscle Myosin Type IIA/chemistry , Peptide Library , Peptides/chemistry , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Protein Binding , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
8.
Sci Rep ; 10(1): 9518, 2020 Jun 09.
Article En | MEDLINE | ID: mdl-32518294

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Biochem J ; 477(12): 2153-2177, 2020 06 26.
Article En | MEDLINE | ID: mdl-32484216

Scaffold proteins play pivotal role as modulators of cellular processes by operating as multipurpose conformation clamps. 14-3-3 proteins are gold-standard scaffold modules that recognize phosphoSer/Thr (pS/pT) containing conserved motifs, and confer conformational changes leading to modulation of functional parameters of their target proteins. Modulation in functional activity of kinases has been attributed to their interaction with 14-3-3 proteins. Herein, we have annotated and characterized PF3D7_0818200 as 14-3-3 isoform I in Plasmodium falciparum 3D7, and its interaction with one of the key kinases of the parasite, Calcium-Dependent Protein Kinase 1 (CDPK1) by performing various analytical biochemistry and biophysical assays. Molecular dynamics simulation studies indicated that CDPK1 polypeptide sequence (61KLGpS64) behaves as canonical Mode I-type (RXXpS/pT) consensus 14-3-3 binding motif, mediating the interaction. The 14-3-3I/CDPK1 interaction was validated in vitro with ELISA and SPR, which confirmed that the interaction is phosphorylation dependent, with binding affinity constant of 670 ± 3.6 nM. The interaction of 14-3-3I with CDPK1 was validated with well characterized optimal 14-3-3 recognition motifs: Mode I-type ARSHpSYPA and Mode II-type RLYHpSLPA, by simulation studies and ITC. This interaction was found to marginally enhance CDPK1 functional activity. Furthermore, interaction antagonizing peptidomimetics showed growth inhibitory impact on the parasite indicating crucial physiological role of 14-3-3/CDPK1 interaction. Overall, this study characterizes 14-3-3I as a scaffold protein in the malaria parasite and unveils CDPK1 as its previously unidentified target. This sets a precedent for the rational design of 14-3-3 based PPI inhibitors by utilizing 14-3-3 recognition motif peptides, as a potential antimalarial strategy.


14-3-3 Proteins/metabolism , Malaria, Falciparum/parasitology , Molecular Dynamics Simulation , Plasmodium falciparum/growth & development , Protein Kinases/metabolism , Protozoan Proteins/metabolism , 14-3-3 Proteins/chemistry , Amino Acid Sequence , Animals , Phosphorylation , Phylogeny , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/metabolism , Protein Conformation , Protein Kinases/chemistry , Protozoan Proteins/chemistry , Sequence Homology
10.
Biochem J ; 477(10): 1951-1970, 2020 05 29.
Article En | MEDLINE | ID: mdl-32401306

Upon Plasmodium falciparum merozoites exposure to low [K+] environment in blood plasma, there is escalation of cytosolic [Ca2+] which activates Ca2+-Dependent Protein Kinase 1 (CDPK1), a signaling hub of intra-erythrocytic proliferative stages of parasite. Given its high abundance and multidimensional attributes in parasite life-cycle, this is a lucrative target for designing antimalarials. Towards this, we have virtually screened MyriaScreenII diversity collection of 10,000 drug-like molecules, which resulted in 18 compounds complementing ATP-binding pocket of CDPK1. In vitro screening for toxicity in mammalian cells revealed that these compounds are non-toxic in nature. Furthermore, SPR analysis demonstrated differential binding affinity of these compounds towards recombinantly purified CDPK1 protein. Selection of lead compound 1 was performed by evaluating their inhibitory effects on phosphorylation and ATP binding activities of CDPK1. Furthermore, in vitro biophysical evaluations by ITC and FS revealed that binding of compound 1 is driven by formation of energetically favorable non-covalent interactions, with different binding constants in presence and absence of Ca2+, and TSA authenticated stability of compound 1 bound CDPK1 complex. Finally, compound 1 strongly inhibited intra-erythrocytic growth of P. falciparum in vitro. Conceivably, we propose a novel CDPK1-selective inhibitor, step towards developing pan-CDPK kinase inhibitors, prerequisite for cross-stage anti-malarial protection.


Drug Design , Malaria, Falciparum/drug therapy , Plasmodium falciparum , Protein Kinases/drug effects , Protozoan Proteins/drug effects , Animals , Antimalarials/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Erythrocytes/parasitology , Humans , Plasmodium falciparum/cytology , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protein Kinases/metabolism , Protozoan Proteins/metabolism
11.
J Biosci ; 452020.
Article En | MEDLINE | ID: mdl-32385222

Leucyl-tRNA synthetases (LRS) catalyze the linkage of leucine with tRNALeu. A large insertion CP1 domain (Connective Polypeptide 1) in LRS is responsible for post-transfer editing of mis-charged aminoacyl-tRNAs. Here, we characterized the CP1 domain of Leishmania donovani, a protozoan parasite, and its role in editing activity and interaction with broad spectrum anti-fungal, AN2690. The deletion mutant of LRS, devoid of CP1 domain (LRS-CP1Δ) was constructed, followed by determination of its role in editing and aminoacylation. Binding of AN2690 and different amino acids with CP1 deletion mutant and full length LRS was evaluated using isothermal titration calorimetry (ITC) and molecular dynamics simulations. The recombinant LRS-CP1Δ protein did not catalyze the aminoacylation and the editing reaction when compared to full-length LRS. Thus, indicating that CP1 domain was imperative for both aminoacylation and editing activities of LRS. Binding studies with different amino acids indicated selectivity of isoleucine by CP1 domain over other amino acids. These studies also indicated high affinity of AN2690 with the editing domain. Molecular docking studies indicated that AN2690-CP1 domain complex was stabilized by hydrogen bonding and hydrophobic interactions resulting in high binding affinity between the two. Our data suggests CP1 is crucial for the function of L.donovani LRS.


Antiprotozoal Agents/pharmacology , Boron Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Leishmania donovani/chemistry , Leucine-tRNA Ligase/antagonists & inhibitors , Peptides/chemistry , Protein Processing, Post-Translational , Protozoan Proteins/antagonists & inhibitors , Amino Acid Sequence , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antiprotozoal Agents/chemistry , Binding Sites , Boron Compounds/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Drug Repositioning , Gene Expression , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Leishmania donovani/enzymology , Leishmania donovani/genetics , Leucine-tRNA Ligase/chemistry , Leucine-tRNA Ligase/genetics , Leucine-tRNA Ligase/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , RNA, Transfer, Leu/chemistry , RNA, Transfer, Leu/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Deletion , Sequence Homology, Amino Acid , Transfer RNA Aminoacylation/genetics
12.
Int J Nanomedicine ; 15: 239-252, 2020.
Article En | MEDLINE | ID: mdl-32021177

INTRODUCTION: Aluminum salts, although they have been used as adjuvants in many vaccine formulations since 1926, exclusively induce a Th2-biased immune response, thereby limiting their use against intracellular pathogens like Mycobacterium tuberculosis. METHODS AND RESULTS: Herein, we synthesized amorphous and crystalline forms of aluminum hydroxide nanoparticles (AH nps) of 150-200 nm size range. Using Bacillus anthracis protective antigen domain 4 (D4) as a model antigen, we demonstrated that both amorphous and crystalline forms of AH nps displayed enhanced antigen D4 uptake by THP1 cells as compared to commercial adjuvant aluminum hydroxide gel (AH gel). In a mouse model, both amorphous and crystalline AH nps triggered an enhanced D4-specific Th2- and Th1-type immune response and conferred superior protection against anthrax spore challenge as compared to AH gel. Physicochemical characterization of crystalline and amorphous AH nps revealed stronger antigen D4 binding and release than AH gel. CONCLUSION: These results demonstrate that size and crystallinity of AH nps play important roles in mediating enhanced antigen presenting cells (APCs) activation and potentiating a strong antigen-specific immune response, and are critical parameters for the rational design of alum-based Th1-type adjuvant to induce a more balanced antigen-specific immune response.


Adjuvants, Immunologic/pharmacology , Aluminum Hydroxide/chemistry , Anthrax/prevention & control , Antigens, Bacterial/immunology , Bacterial Toxins/immunology , Metal Nanoparticles/chemistry , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacokinetics , Aluminum Hydroxide/immunology , Aluminum Hydroxide/pharmacology , Animals , Anthrax/immunology , Anthrax Vaccines/chemistry , Anthrax Vaccines/immunology , Anthrax Vaccines/pharmacology , Cell Line , Disease Models, Animal , Dynamic Light Scattering , Female , Humans , Mice , RAW 264.7 Cells , Spectroscopy, Fourier Transform Infrared , Th1 Cells/immunology
13.
RSC Adv ; 10(34): 20288-20301, 2020 May 26.
Article En | MEDLINE | ID: mdl-35520402

The HEP II (Heparin-binding site II) region of fibronectin (FN) containing domain III14 plays a crucial role in cell adhesion and migration through heparin-binding on the cell surface. There are two such fibronectin heparin interacting peptide (FHIP I and FHIP II) sequences present in HEP II. However, the molecular principles by which these sites orchestrate heparin-binding processes are poorly understood. Such knowledge would have great implications in the therapeutic targeting of FN. With this aim, we have explored the binding studies of FHIP I and FHIP II with heparin using various biophysical methods. A fluorescence melting study specifically revealed the preference of heparin for domain III in FN, indicating the key contribution of FHIP I and FHIP II in heparin binding. In isothermal titration calorimetry (ITC), the higher binding affinity observed for FHIP II (∼107 mol-1) compared to FHIP I (∼106 mol-1) is expected due to the presence of a superior cluster of Arg and Lys residues in FHIP II, which can facilitate specific H-bonding interactions with heparin. Based on heat capacity changes, the key role of H-bonding, electrostatic and hydrophobic interactions was demonstrated in binding. Finally, the molecular docking and MD simulation results reinforced that the interaction of heparin (dodecasaccharide) is stronger and stable with the FHIP II peptide. The results described here suggest that these peptides provide all the structural and thermodynamic elements necessary for heparin-binding of HEP II of FN. Subsequently, it can be concluded that FHIP II could be a better location for therapeutic intervention in cell adhesion activity by FN.

14.
Sci Rep ; 9(1): 5891, 2019 04 10.
Article En | MEDLINE | ID: mdl-30971720

DNA condensation is a ubiquitous phenomenon in biology, yet the physical basis for it has remained elusive. Here, we have explored the mechanism of DNA condensation through the protamine-DNA interaction, and by examining on it the influence of DNA binding drugs. We observed that the DNA condensation is accompanied by B to Ψ-DNA transition as a result of DNA base pair distortions due to protamine binding, bringing about the formation of toroidal structure through coil-globule transition. The binding energetics suggested that electrostatic energy, bending energy and hydration energy must play crucial roles in DNA condensation. EtBr intercalation interferes with the protamine-DNA interaction, challenging the distortion of the DNA helix and separation of DNA base pairs by protamine. Thus, EtBr, by competing directly with protamine, resists the phenomenon of DNA condensation. On the contrary, netropsin impedes the DNA condensation by an allosteric mechanism, by resisting the probable DNA major groove bending by protamine. In summary, we demonstrate that drugs with distinct binding modes use different mechanism to interfere with DNA condensation.


DNA/chemistry , Protamines/chemistry , Allosteric Regulation , Base Pairing , DNA/metabolism , Ethidium/chemistry , Netropsin/chemistry , Netropsin/metabolism , Nucleic Acid Conformation , Protamines/metabolism , Static Electricity , Thermodynamics
15.
Int J Nanomedicine ; 14: 10023-10033, 2019.
Article En | MEDLINE | ID: mdl-31908457

PURPOSE: The objective of this research was to generate a tool for the first-line detection of fungal infection in plants. Chitin is one of the unique fungal cell wall polysaccharide which is naturally deacetylated to chitosan upon infection. It is said to be involved in the fungal cell wall modulation and plant-pathogen communication. Therefore, detection of chitosan could be potentially helpful in the detection of fungal contamination. METHODS: Five different phytopathogenic fungi strains were used for the study. Polyclonal sera were raised in the mice against Trimethylchitosan nanoparticles to generate an enhanced humoral immune response and generate a rich and heterogeneous repertoire of antibodies. The binding affinity of the sera with fungal cell wall was analyzed by ELISA, Langmuir isotherm, confocal microscopy and ITC (Isothermal Calorimetry). RESULTS: The raised polyclonal sera could detect chitosan in the fungal cell wall, as analyzed with the different techniques. However, the detection specificity varied among the strains in proportion to the chitin content of their cell wall. Fusarium oxysporum was detected with the highest affinity while Trichoderma reesei was detected with the least affinity by ELISA. Adsorption isotherm, as well as ITC, revealed the specific and high binding capacity. Confocal microscopy also confirmed the detection of all strains used in the study. CONCLUSION: This novel technique employing TMC nanoparticulate system could be potentially used as a source to raise sera against chitosan in an inexpensive and less laborious manner. Rapid detection of fungal contamination by the polyclonal antibodies could help in devising a quick solution. The polyclonal sera are expected to detect a span of epitopes and provide precise detection. The detection system could be advanced for future applications such as food quality control, crop protection, and human fungal infection detection and treatment.


Chitosan/immunology , Fungi/cytology , Nanoparticles , Plant Diseases/microbiology , Animals , Cell Wall/microbiology , Chitosan/chemistry , Fungi/immunology , Fungi/pathogenicity , Fusarium/cytology , Fusarium/immunology , Fusarium/pathogenicity , Immune Sera/metabolism , Immunity, Humoral , Mice
16.
PLoS Negl Trop Dis ; 12(6): e0006575, 2018 06.
Article En | MEDLINE | ID: mdl-29897900

BACKGROUND: Aminoacyl tRNA synthetases are central enzymes required for protein synthesis. These enzymes are the known drug targets in bacteria and fungi. Here, we for the first time report the functional characterization of threonyl tRNA synthetase (LdThrRS) of Leishmania donovani, a protozoan parasite, the primary causative agent of visceral leishmaniasis. METHODOLOGY: Recombinant LdThrRS (rLdThrRS) was expressed in E. coli and purified. The kinetic parameters for rLdThrRS were determined. The subcellular localization of LdThrRS was done by immunofluorescence analysis. Heterozygous mutants of LdThrRS were generated in Leishmania promastigotes. These genetically manipulated parasites were checked for their proliferation, virulence, aminoacylation activity and sensitivity to the known ThrRS inhibitor, borrelidin. An in silico generated structural model of L. donovani ThrRS was compared to that of human. CONCLUSIONS: Recombinant LdThrRS displayed aminoacylation activity, and the protein is possibly localized to both the cytosol and mitochondria. The comparison of the 3D-model of LdThrRS to human ThrRS displayed considerable similarity. Heterozygous parasites showed restrictive growth phenotype and had attenuated infectivity. These heterozygous parasites were more susceptible to inhibition by borrelidin. Several attempts to obtain ThrRS homozygous null mutants were not successful, indicating its essentiality for the Leishmania parasite. Borrelidin showed a strong affinity for LdThrRS (KD: 0.04 µM) and was effective in inhibiting the aminoacylation activity of the rLdThrRS (IC50: 0.06 µM). Borrelidin inhibited the promastigotes (IC50: 21 µM) stage of parasites. Our data shows that LdThrRS is essential for L. donovani survival and is likely to bind with small drug-like molecules with strong affinity, thus making it a potential target for drug discovery efforts.


Leishmania donovani/enzymology , Leishmaniasis, Visceral/parasitology , Threonine-tRNA Ligase/genetics , Drug Delivery Systems , Escherichia coli/enzymology , Escherichia coli/genetics , Fatty Alcohols/pharmacology , Gene Expression , Humans , Leishmania donovani/drug effects , Leishmania donovani/genetics , Leishmania donovani/pathogenicity , Organisms, Genetically Modified , Phylogeny , Protein Domains , Protein Transport , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , Recombinant Proteins , Sequence Deletion , Threonine-tRNA Ligase/antagonists & inhibitors , Threonine-tRNA Ligase/isolation & purification , Threonine-tRNA Ligase/metabolism
17.
Article En | MEDLINE | ID: mdl-29941647

Visceral leishmaniasis is an important public health threat in parts of India. It is caused by a protozoan parasite, Leishmania donovani Currently available drugs manifest severe side effects. Hence, there is a need to identify new drug targets and drugs. Aminoacyl-tRNA synthetases, required for protein synthesis, are known drug targets for bacterial and fungal pathogens. The aim of the present study was to obtain essentiality data for Leishmania donovani leucyl-tRNA synthetase (LdLRS) by gene replacement. Gene replacement studies indicate that this enzyme plays an essential role in the viability of this pathogenic organism and appears to be indispensable for its survival in vitro The heterozygous mutant parasites demonstrated a growth deficit and reduced infectivity in mouse macrophages compared to the wild-type cells. We also report that Leishmania donovani recombinant LRS displayed aminoacylation activity and that the protein localized to both the cytosol and the mitochondrion. A broad-spectrum antifungal, 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), was found to inhibit parasite growth in both the promastigote and amastigote stages in vitro as well as in vivo in BALB/c mice. This compound exhibited low toxicity to mammalian cells. AN2690 was effective in inhibiting the aminoacylation activity of the recombinant LdLRS. We provide preliminary chemical validation of LdLRS as a drug target by showing that AN2690 is an inhibitor both of L. donovani LRS and of L. donovani cell growth.


Amino Acyl-tRNA Synthetases/genetics , Boron Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Leishmania donovani/drug effects , Parasites/drug effects , Animals , Cell Line , Cytosol/parasitology , Female , Gene Deletion , Heterozygote , Leishmania donovani/genetics , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Macrophages/parasitology , Mice , Mice, Inbred BALB C , Mitochondria/parasitology , Parasites/genetics , Protozoan Proteins/genetics
18.
Arch Pharm (Weinheim) ; 351(6): e1700373, 2018 Jun.
Article En | MEDLINE | ID: mdl-29672908

Information on how small molecules bind to the target enzyme has the potential to impact immensely on how medicinal chemists go about antiparasitic drug discovery. In this review, for the first time, we intend to make an assessment of the structural aspects of trypanothione reductase as drug target, and its complexes with several reversible drugs from the Protein Data Bank (PDB). We attempt to reveal the mechanism of these interactions by careful accounting of the X-ray structures and their possible roles in biological activity to treat Trypanosomatidae diseases. We focus on some of the outstanding findings from structures that are relevant to anti-trypanocidal drug discovery. We also review new interesting compounds that have appeared in the literature based on these X-ray structures.


Drug Design , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Humans , NADH, NADPH Oxidoreductases/chemistry , Trypanosoma/drug effects , Trypanosoma/enzymology , Trypanosomiasis/drug therapy , Trypanosomiasis/parasitology
19.
Int J Biol Macromol ; 112: 1084-1092, 2018 Jun.
Article En | MEDLINE | ID: mdl-29410106

Studying interaction of IgG with bacterial proteins such as proA (Protein A) and proG is essential for development in the areas of drug discovery and biotechnology. Some solution studies in the past have hinted at the possibility of variable binding ratios for IgG with proA and proG. Since earlier crystallographic studies focussed mostly on monomeric complexes, the knowledge about the binding interfaces and protein conformational changes involved in multimeric complexes is scarce. In this paper, we observed that single proA molecule was able to bind to three IgG molecules (1:3, proA:IgG) in ITC accentuating the presence of conformational flexibility in proA, corroborated also by CD results. By contrast, proG binds with 1:1 stoichiometry to IgG, which also involves key structural rearrangement within the binding interface of IgG-proG complex, confirmed by fluorescence KI quenching study. It is implicit from CD and fluorescence results that IgG does not undergo any significant conformational changes, which further suggests that proA and proG dictate the phenomenon of recognition in antibody complexes. ANS as a hydrophobic probe helped in revealing the distinctive antibody binding mechanism of proA and proG. Additionally, the binding competition experiments using ITC established that proA and proG cannot bind IgG concurrently.


Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Lymphokines/chemistry , Lymphokines/metabolism , Binding, Competitive , Calorimetry , Circular Dichroism , Dynamic Light Scattering , Humans , Hydrodynamics , Hydrophobic and Hydrophilic Interactions , Kinetics , Protein Binding , Protein Conformation , Spectrometry, Fluorescence , Thermodynamics
20.
J Mol Recognit ; 31(1)2018 01.
Article En | MEDLINE | ID: mdl-28961341

The heparin-protein interaction plays a vital role in numerous physiological and pathological processes. Not only is the binding mechanism of these interactions poorly understood, studies concerning their therapeutic targeting are also limited. Here, we have studied the interaction of the heparin interacting peptide (HIP) from Tat (which plays important role in HIV infections) with heparin. Isothermal titration calorimetry binding exhibits distinct biphasic isotherm with two different affinities in the HIP-heparin complex formation. Overall, the binding was mainly driven by the nonionic interactions with a small contribution from ionic interactions. The stoichiometric analysis suggested that the minimal site for a single HIP molecule is a chain of 4 to 5 saccharide molecules, also supported by docking studies. The investigation was also focused on exploiting the possibility of using a small molecule as an inhibitor of the HIP-heparin complex. Quinacrine, because of its ability to mimic the HIP interactions with heparin, was shown to successfully modulate the HIP-heparin interactions. This result demonstrates the feasibility of inhibiting the disease relevant heparin-protein interactions by a small molecule, which could be an effective strategy for the development of future therapeutic agents.


Heparin/chemistry , Peptide Fragments/chemistry , Quinacrine/chemistry , tat Gene Products, Human Immunodeficiency Virus/chemistry , Binding Sites , Molecular Docking Simulation , Protein Binding , Thermodynamics
...