Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 13: 993258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311227

RESUMEN

This study aimed to evaluate the acute effects of aerobic and resistance exercises on blood pressure and endothelial blood markers. We also correlated post-exercise blood pressure response with baseline cardiovascular parameters in middle-aged patients with hypertension. This cross-sectional study randomized 54 volunteers into the aerobic exercise group (AG, n = 27; 45.6 ± 7.7 years) or dynamic resistance exercise group (RG, n = 27; 45.8 ± 8.4 years). Blood marker evaluation, cardiopulmonary exercise tests, resting blood pressure monitoring, ambulatory blood pressure monitoring (ABPM), flow-mediated dilatation monitoring, and body composition evaluation were carried out. Exercise sessions were performed to evaluate post-exercise hypotension (PEH) and endothelial marker responses, in addition to post-exercise ABPM (ABPMex). This study is an arm of the study which was approved by the local ethics committee (No. 69373217.3.0000.5347) in accordance with the Helsinki Declaration and was registered at ClinicalTrials.gov (NCT03282942). The AG performed walking/running at 60% of the reserve heart rate, while the RG performed 10 exercises with two sets of 15-20 repetitions. The mean 24 h ABPM and ABPMex values showed no significant statistical differences. Systolic and diastolic blood pressure hypotension after aerobic and dynamic resistance were -10.59 ± 5.24/-6.15 ± 6.41 mmHg and -5.56 ± 7.61/-6.20 ± 8.25 mmHg, respectively. For an up-to-7 h assessment of resting pressure, there was a positive effect in the aerobic group. The concentrations of nitrites/nitrates (NOx) and endothelin-1 (ET-1) did not change during hypotension. Moreover, PEH and ABPMex were significantly correlated with baseline health variables. Thus, when middle-aged patients with hypertension perform aerobic or resistance exercise, the NOx/ET-1 pathway does not provide the best explanation for PEH. Finally, we found associations between baseline cardiovascular variables and endothelial vasoconstrictors with PEH.

2.
Br J Nutr ; : 1-13, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35614845

RESUMEN

This exploratory study investigated the effects of early v. delayed time-restricted eating (TRE) plus caloric restriction (CR) on body weight, body composition and cardiometabolic parameters in adults with overweight and obesity. Adults (20-40 years) were randomised to one of three groups for 8 weeks: early time-restricted eating (eTRE; 08.00-16.00) plus CR, delayed time-restricted eating (dTRE; 12.00-20.00) plus CR or only CR (CR; 08.00-20.00). All groups were prescribed a 25 % energy deficit relative to daily energy requirements. Thirteen participants completed the study in the eTRE and CR groups and eleven in the dTRE group (n 37). After the interventions, there was no significant difference between the three groups for any of the outcomes. Compared with baseline, significant decreases were observed in the body weight (eTRE group: -4·2 kg; 95 % CI, -5·6, -2·7; dTRE group: -4·8 kg; 95 % CI, -5·9, -3·7; CR: -4·0 kg; 95 % CI, -5·9, -2·1), fat mass (eTRE group: -2·9 kg; 95 % CI, -3·9, -1·9; dTRE group: -3·6 kg; 95 % CI, -4·6, -2·5; CR: -3·1 kg; 95 % CI, -4·3, -1·8) and fasting glucose levels (eTRE group: -4 mg/dl; 95 % CI, -8, -1; dTRE group: -2 mg/dl; 95 % CI, -8, 3; CR: -3 mg/dl; 95 % CI, -8, 2). In a free-living setting, TRE with a energetic deficit, regardless of the time of day, promotes similar benefits in weight loss, body composition and cardiometabolic parameters. However, given the exploratory nature of our study, further investigation is needed to confirm these findings.

3.
Life (Basel) ; 11(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34833020

RESUMEN

BACKGROUND: Reduced glutathione (GSH) is one of the main thiols involved in antioxidant defense. Changes in circulatory levels of GSH during exercise are associated with hyperthermia and dehydration. The mechanisms by which these alterations occur are not entirely known. We hypothesize that erythrocytes could be an important source of circulatory GSH during heat stress conditions. We performed two separate experiments to address this hypothesis. METHODS: In the first experiment, we sought to investigate the impact of exercise in the heat and dehydration on erythrocyte levels of GSH. A total of 10 men performed 60 min of cycling at 60% VO2peak in the heat (38.0 ± 0.9 °C) or in a control temperate environment (23.0 ± 1.0 °C), both with and without dehydration. Relative humidity ranged from 50 to 70%. Blood samples were taken before and after exercise to measure GSH and oxidized (GSSG) glutathione. In the second experiment, erythrocytes were isolated from blood samples taken at rest and heated in vitro to determine the impact of heat on erythrocyte glutathione content. Tubes with erythrocytes were exposed to water baths at different temperatures; one tube was exposed to a water bath at 35 °C and the other tube to a water bath at 41 °C for a period of 30 min. After exposure to heat, plasma and erythrocytes were extracted for GSH and GSSG analyses. RESULTS: Dehydration decreased circulatory GSH, regardless of ambient temperature (temperate and heat decreased 15.35% and 30.31%, respectively), resulting in an altered redox balance. Heat increased GSH levels in vitro. CONCLUSION: Our data suggest that dehydration decreases circulatory GSH levels regardless of environmental temperature. In addition, in vitro data suggests that erythrocytes may contribute to the release of GSH during exposure to heat stress.

4.
Exp Physiol ; 106(4): 1024-1037, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33624912

RESUMEN

NEW FINDING: What is the central question of this study? How does moderate-intensity aerobic exercise affect the behaviour of purinergic enzymes in sedentary, overweight and physically active subjects? What is the relationship between purinergic and inflammatory responses triggered by exercise? What is the main finding and its importance? Moderate-intensity aerobic exercise modifies the activity of purinergic enzymes and the levels of nucleotides and nucleosides. These results are similar in subjects with different biological characteristics. 5'-Nucleotidase activity and adenosine levels are associated with inflammatory responses. This study suggests that a purinergic pathway is related to the inflammatory responses triggered by exercise. ABSTRACT: Purinergic signalling is a mechanism of extracellular communication that modulates events related to exercise, such as inflammation and coagulation. Herein, we evaluated the effects of acute moderate-intensity exercise on the activities of purinergic enzymes and plasma levels of adenine nucleotides in individuals with distinct metabolic characteristics. We analysed the relationship between purinergic parameters, inflammatory responses and cardiometabolic markers. Twenty-four healthy males were assigned to three groups: normal weight sedentary (n = 8), overweight sedentary (n = 8) and normal weight physically active (n = 8). The volunteers performed an acute session of moderate-intensity aerobic exercise on a treadmill at 70% of V̇O2peak ; blood samples were drawn at baseline, immediately post-exercise and at 1 h post-exercise. Immediately post-exercise, all subjects showed increases in ATP, ADP, AMP and p-nitrophenyl thymidine 5'-monophosphate hydrolysis, while AMP hydrolysis remained increased at 1 h after exercise. High-performance liquid chromatography analysis demonstrated lower levels of ATP and ADP at post- and 1 h post-exercise in all groups. Conversely, adenosine and inosine levels increased at post-exercise, but only adenosine remained augmented at 1 h after exercise in all groups. With regard to inflammatory responses, the exercise protocol increased tumour necrosis factor α (TNF-α) and interleukin 8 (IL-8) concentrations in all subjects, but only TNF-α remained elevated at 1 h after exercise. Significant correlations were found between the activity of 5'-nucleotidase, adenosine levels, V̇O2peak , triglyceride, TNF-α and IL-8 levels. Our findings suggest a purinergic signalling pathway that participates, at least partially, in the inflammatory responses triggered by acute moderate-intensity exercise. The response of soluble nucleotidases to acute moderate exercise appears to be similar between subjects of different biological profiles.


Asunto(s)
Ejercicio Físico , Sobrepeso , Adenosina , Ejercicio Físico/fisiología , Prueba de Esfuerzo , Humanos , Inflamación , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA