Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Proc Natl Acad Sci U S A ; 120(17): e2210929120, 2023 04 25.
Article En | MEDLINE | ID: mdl-37068227

Coenzyme A (CoA) biosynthesis is an excellent target for antimalarial intervention. While most studies have focused on the use of CoA to produce acetyl-CoA in the apicoplast and the cytosol of malaria parasites, mitochondrial acetyl-CoA production is less well understood. In the current study, we performed metabolite-labeling experiments to measure endogenous metabolites in Plasmodium falciparum lines with genetic deletions affecting mitochondrial dehydrogenase activity. Our results show that the mitochondrion is required for cellular acetyl-CoA biosynthesis and identify a synthetic lethal relationship between the two main ketoacid dehydrogenase enzymes. The activity of these enzymes is dependent on the lipoate attachment enzyme LipL2, which is essential for parasite survival solely based on its role in supporting acetyl-CoA metabolism. We also find that acetyl-CoA produced in the mitochondrion is essential for the acetylation of histones and other proteins outside of the mitochondrion. Taken together, our results demonstrate that the mitochondrion is required for cellular acetyl-CoA metabolism and protein acetylation essential for parasite survival.


Mitochondria , Plasmodium falciparum , Plasmodium falciparum/genetics , Acetyl Coenzyme A/metabolism , Acetylation , Mitochondria/metabolism , Oxidoreductases/metabolism
2.
Nat Commun ; 13(1): 2158, 2022 04 20.
Article En | MEDLINE | ID: mdl-35444200

Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission.


Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Malaria, Vivax , Malaria , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Vivax/drug therapy , Mice , Pantothenic Acid/analogs & derivatives , Plasmodium falciparum/genetics , Rats
3.
Cell Chem Biol ; 29(2): 191-201.e8, 2022 02 17.
Article En | MEDLINE | ID: mdl-34348113

We identify the Plasmodium falciparum acetyl-coenzyme A synthetase (PfAcAS) as a druggable target, using genetic and chemical validation. In vitro evolution of resistance with two antiplasmodial drug-like compounds (MMV019721 and MMV084978) selects for mutations in PfAcAS. Metabolic profiling of compound-treated parasites reveals changes in acetyl-CoA levels for both compounds. Genome editing confirms that mutations in PfAcAS are sufficient to confer resistance. Knockdown studies demonstrate that PfAcAS is essential for asexual growth, and partial knockdown induces hypersensitivity to both compounds. In vitro biochemical assays using recombinantly expressed PfAcAS validates that MMV019721 and MMV084978 directly inhibit the enzyme by preventing CoA and acetate binding, respectively. Immunolocalization studies reveal that PfAcAS is primarily localized to the nucleus. Functional studies demonstrate inhibition of histone acetylation in compound-treated wild-type, but not in resistant parasites. Our findings identify and validate PfAcAS as an essential, druggable target involved in the epigenetic regulation of gene expression.


Acetate-CoA Ligase/antagonists & inhibitors , Antimalarials/pharmacology , Enzyme Inhibitors/pharmacology , Malaria/drug therapy , Plasmodium falciparum/drug effects , Acetate-CoA Ligase/metabolism , Antimalarials/chemistry , Enzyme Inhibitors/chemistry , Humans , Malaria/metabolism , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology
4.
J Biol Chem ; 295(21): 7235-7248, 2020 05 22.
Article En | MEDLINE | ID: mdl-32273345

The mitochondrion of malaria parasites contains several clinically validated drug targets. Within Plasmodium spp., the causative agents of malaria, the mitochondrial DNA (mtDNA) is only 6 kb long, being the smallest mitochondrial genome among all eukaryotes. The mtDNA encodes only three proteins of the mitochondrial electron transport chain and ∼27 small, fragmented rRNA genes having lengths of 22-195 nucleotides. The rRNA fragments are thought to form a mitochondrial ribosome (mitoribosome), together with ribosomal proteins imported from the cytosol. The mitoribosome of Plasmodium falciparum is essential for maintenance of the mitochondrial membrane potential and parasite viability. However, the role of the mitoribosome in sustaining the metabolic status of the parasite mitochondrion remains unclear. The small ribosomal subunit in P. falciparum has 14 annotated mitoribosomal proteins, and employing a CRISPR/Cas9-based conditional knockdown tool, here we verified the location and tested the essentiality of three candidates (PfmtRPS12, PfmtRPS17, and PfmtRPS18). Using immuno-EM, we provide evidence that the P. falciparum mitoribosome is closely associated with the mitochondrial inner membrane. Upon knockdown of the mitoribosome, parasites became hypersensitive to inhibitors targeting mitochondrial Complex III (bc1), dihydroorotate dehydrogenase (DHOD), and the F1F0-ATP synthase complex. Furthermore, the mitoribosome knockdown blocked the pyrimidine biosynthesis pathway and reduced the cellular pool of pyrimidine nucleotides. These results suggest that disruption of the P. falciparum mitoribosome compromises the metabolic capacity of the mitochondrion, rendering the parasite hypersensitive to a panel of inhibitors that target mitochondrial functions.


Antimalarials/pharmacology , Malaria, Falciparum/metabolism , Mitochondria/metabolism , Mitochondrial Ribosomes/metabolism , Plasmodium falciparum/metabolism , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
...