Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
PLoS Comput Biol ; 19(12): e1011652, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38060459

RESUMEN

Information is the cornerstone of research, from experimental (meta)data and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems to transform this large information load into useful scientific findings.

2.
Front Cell Dev Biol ; 11: 1151318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325568

RESUMEN

mRNA translation is the ubiquitous cellular process of reading messenger-RNA strands into functional proteins. Over the past decade, large strides in microscopy techniques have allowed observation of mRNA translation at a single-molecule resolution for self-consistent time-series measurements in live cells. Dubbed Nascent chain tracking (NCT), these methods have explored many temporal dynamics in mRNA translation uncaptured by other experimental methods such as ribosomal profiling, smFISH, pSILAC, BONCAT, or FUNCAT-PLA. However, NCT is currently restricted to the observation of one or two mRNA species at a time due to limits in the number of resolvable fluorescent tags. In this work, we propose a hybrid computational pipeline, where detailed mechanistic simulations produce realistic NCT videos, and machine learning is used to assess potential experimental designs for their ability to resolve multiple mRNA species using a single fluorescent color for all species. Our simulation results show that with careful application this hybrid design strategy could in principle be used to extend the number of mRNA species that could be watched simultaneously within the same cell. We present a simulated example NCT experiment with seven different mRNA species within the same simulated cell and use our ML labeling to identify these spots with 90% accuracy using only two distinct fluorescent tags. We conclude that the proposed extension to the NCT color palette should allow experimentalists to access a plethora of new experimental design possibilities, especially for cell Signaling applications requiring simultaneous study of multiple mRNAs.

3.
Front Cell Dev Biol ; 11: 1133994, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305680

RESUMEN

Introduction: Despite continued technological improvements, measurement errors always reduce or distort the information that any real experiment can provide to quantify cellular dynamics. This problem is particularly serious for cell signaling studies to quantify heterogeneity in single-cell gene regulation, where important RNA and protein copy numbers are themselves subject to the inherently random fluctuations of biochemical reactions. Until now, it has not been clear how measurement noise should be managed in addition to other experiment design variables (e.g., sampling size, measurement times, or perturbation levels) to ensure that collected data will provide useful insights on signaling or gene expression mechanisms of interest. Methods: We propose a computational framework that takes explicit consideration of measurement errors to analyze single-cell observations, and we derive Fisher Information Matrix (FIM)-based criteria to quantify the information value of distorted experiments. Results and Discussion: We apply this framework to analyze multiple models in the context of simulated and experimental single-cell data for a reporter gene controlled by an HIV promoter. We show that the proposed approach quantitatively predicts how different types of measurement distortions affect the accuracy and precision of model identification, and we demonstrate that the effects of these distortions can be mitigated through explicit consideration during model inference. We conclude that this reformulation of the FIM could be used effectively to design single-cell experiments to optimally harvest fluctuation information while mitigating the effects of image distortion.

4.
bioRxiv ; 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36747627

RESUMEN

mRNA translation is the ubiquitous cellular process of reading messenger-RNA strands into functional proteins. Over the past decade, large strides in microscopy techniques have allowed observation of mRNA translation at a single-molecule resolution for self-consistent time-series measurements in live cells. Dubbed Nascent chain tracking (NCT), these methods have explored many temporal dynamics in mRNA translation uncaptured by other experimental methods such as ribosomal profiling, smFISH, pSILAC, BONCAT, or FUNCAT-PLA. However, NCT is currently restricted to the observation of one or two mRNA species at a time due to limits in the number of resolvable fluorescent tags. In this work, we propose a hybrid computational pipeline, where detailed mechanistic simulations produce realistic NCT videos, and machine learning is used to assess potential experimental designs for their ability to resolve multiple mRNA species using a single fluorescent color for all species. Through simulation, we show that with careful application, this hybrid design strategy could in principle be used to extend the number of mRNA species that could be watched simultaneously within the same cell. We present a simulated example NCT experiment with seven different mRNA species within the same simulated cell and use our ML labeling to identify these spots with 90% accuracy using only two distinct fluorescent tags. The proposed extension to the NCT color palette should allow experimentalists to access a plethora of new experimental design possibilities, especially for cell signalling applications requiring simultaneous study of multiple mRNAs.

5.
Bio Protoc ; 12(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36082371

RESUMEN

In eukaryotic cells, RNA Polymerase II (RNAP2) is the enzyme in charge of transcribing mRNA from DNA. RNAP2 possesses an extended carboxy-terminal domain (CTD) that gets dynamically phosphorylated as RNAP2 progresses through the transcription cycle, therefore regulating each step of transcription from recruitment to termination. Although RNAP2 residue-specific phosphorylation has been characterized in fixed cells by immunoprecipitation-based assays, or in live cells by using tandem gene arrays, these assays can mask heterogeneity and limit temporal and spatial resolution. Our protocol employs multi-colored complementary fluorescent antibody-based (Fab) probes to specifically detect the CTD of the RNAP2 (CTD-RNAP2), and its phosphorylated form at the serine 5 residue (Ser5ph-RNAP2) at a single-copy HIV-1 reporter gene. Together with high-resolution fluorescence microscopy, single-molecule tracking analysis, and rigorous computational modeling, our system allows us to visualize, quantify, and predict endogenous RNAP2 phosphorylation dynamics and mRNA synthesis at a single-copy gene, in living cells, and throughout the transcription cycle. Graphical abstract: Schematic of the steps for visualizing, quantifying, and predicting RNAP2 phosphorylation at a single-copy gene.

6.
Nucleic Acids Res ; 50(5): 2754-2764, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188541

RESUMEN

Many cellular processes occur out of equilibrium. This includes site-specific unwinding in supercoiled DNA, which may play an important role in gene regulation. Here, we use the Convex Lens-induced Confinement (CLiC) single-molecule microscopy platform to study these processes with high-throughput and without artificial constraints on molecular structures or interactions. We use two model DNA plasmid systems, pFLIP-FUSE and pUC19, to study the dynamics of supercoiling-induced secondary structural transitions after perturbations away from equilibrium. We find that structural transitions can be slow, leading to long-lived structural states whose kinetics depend on the duration and direction of perturbation. Our findings highlight the importance of out-of-equilibrium studies when characterizing the complex structural dynamics of DNA and understanding the mechanisms of gene regulation.


Asunto(s)
ADN Superhelicoidal , ADN , ADN/genética , ADN Superhelicoidal/genética , Cinética , Conformación de Ácido Nucleico , Plásmidos/genética , Imagen Individual de Molécula
7.
ACS Synth Biol ; 10(12): 3396-3410, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34793137

RESUMEN

Synthetic biology seeks to develop modular biocircuits that combine to produce complex, controllable behaviors. These designs are often subject to noisy fluctuations and uncertainties, and most modern synthetic biology design processes have focused to create robust components to mitigate the noise of gene expression and reduce the heterogeneity of single-cell responses. However, a deeper understanding of noise can achieve control goals that would otherwise be impossible. We explore how an "Optogenetic Maxwell Demon" could selectively amplify noise to control multiple cells using single-input-multiple-output (SIMO) feedback. Using data-constrained stochastic model simulations and theory, we show how an appropriately selected stochastic SIMO controller can drive multiple different cells to different user-specified configurations irrespective of initial conditions. We explore how controllability depends on cells' regulatory structures, the amount of information available to the controller, and the accuracy of the model used. Our results suggest that gene regulation noise, when combined with optogenetic feedback and non-linear biochemical auto-regulation, can achieve synergy to enable precise control of complex stochastic processes.


Asunto(s)
Células Artificiales , Optogenética , Retroalimentación , Procesos Estocásticos , Biología Sintética
8.
Environ Microbiol ; 23(11): 6676-6693, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34390621

RESUMEN

Leaf litter decomposition is a major carbon input to soil, making it a target for increasing soil carbon storage through microbiome engineering. We expand upon previous findings to show with multiple leaf litter types that microbial composition can drive variation in carbon flow from litter decomposition and specific microbial community features are associated with synonymous patterns of carbon flow among litter types. Although plant litter type selects for different decomposer communities, within a litter type, microbial composition drives variation in the quantity of dissolved organic carbon (DOC) measured at the end of the decomposition period. Bacterial richness was negatively correlated with DOC quantity, supporting our hypothesis that across multiple litter types there are common microbial traits linked to carbon flow patterns. Variation in DOC abundance (i.e. high versus low DOC) driven by microbial composition is tentatively due to differences in bacterial metabolism of labile compounds, rather than catabolism of non-labile substrates such as lignin. The temporal asynchrony of metabolic processes across litter types may be a substantial impediment to discovering more microbial features common to synonymous patterns of carbon flow among litters. Overall, our findings support the concept that carbon flow may be programmed by manipulating microbial community composition.


Asunto(s)
Microbiota , Microbiología del Suelo , Carbono , Ciclo del Carbono , Ecosistema , Hojas de la Planta , Suelo/química
9.
Sci Rep ; 11(1): 13692, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34211022

RESUMEN

IL-1ß and TNF-α are canonical immune response mediators that play key regulatory roles in a wide range of inflammatory responses to both chronic and acute conditions. Here we employ an automated microscopy platform for the analysis of messenger RNA (mRNA) expression of IL-1ß and TNF-α at the single-cell level. The amount of IL-1ß and TNF-α mRNA expressed in a human monocytic leukemia cell line (THP-1) is visualized and counted using single-molecule fluorescent in-situ hybridization (smFISH) following exposure of the cells to lipopolysaccharide (LPS), an outer-membrane component of Gram-negative bacteria. We show that the small molecule inhibitors MG132 (a 26S proteasome inhibitor used to block NF-κB signaling) and U0126 (a MAPK Kinase inhibitor used to block CCAAT-enhancer-binding proteins C/EBP) successfully block IL-1ß and TNF-α mRNA expression. Based upon this single-cell mRNA expression data, we screened 36 different mathematical models of gene expression, and found two similar models that capture the effects by which the drugs U0126 and MG132 affect the rates at which the genes transition into highly activated states. When their parameters were informed by the action of each drug independently, both models were able to predict the effects of the combined drug treatment. From our data and models, we postulate that IL-1ß is activated by both NF-κB and C/EBP, while TNF-α is predominantly activated by NF-κB. Our combined single-cell experimental and modeling efforts show the interconnection between these two genes and demonstrates how the single-cell responses, including the distribution shapes, mean expression, and kinetics of gene expression, change with inhibition.


Asunto(s)
Interleucina-1beta/genética , ARN Mensajero/genética , Factor de Necrosis Tumoral alfa/genética , Regulación Leucémica de la Expresión Génica , Humanos , Leucemia/genética , Análisis de la Célula Individual , Transcripción Genética , Activación Transcripcional
10.
STAR Protoc ; 2(3): 100660, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34286292

RESUMEN

This protocol provides a step-by-step approach to perturb single cells with time-varying stimulation profiles, collect distinct signaling responses, and use these to infer a system of ordinary differential equations to capture and predict dynamics of protein-protein regulation in signal transduction pathways. The models are validated by predicting the signaling activation upon new cell stimulation conditions. In comparison to using standard step-like stimulations, application of diverse time-varying cell stimulations results in better inference of model parameters and substantially improves model predictions. For complete details on the use and results of this protocol, please refer to Jashnsaz et al. (2020).


Asunto(s)
Modelos Biológicos , Saccharomyces cerevisiae , Transducción de Señal/fisiología , Biología de Sistemas/métodos , Algoritmos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Factores de Tiempo
11.
Nat Commun ; 12(1): 3158, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039974

RESUMEN

The carboxyl-terminal domain of RNA polymerase II (RNAP2) is phosphorylated during transcription in eukaryotic cells. While residue-specific phosphorylation has been mapped with exquisite spatial resolution along the 1D genome in a population of fixed cells using immunoprecipitation-based assays, the timing, kinetics, and spatial organization of phosphorylation along a single-copy gene have not yet been measured in living cells. Here, we achieve this by combining multi-color, single-molecule microscopy with fluorescent antibody-based probes that specifically bind to different phosphorylated forms of endogenous RNAP2 in living cells. Applying this methodology to a single-copy HIV-1 reporter gene provides live-cell evidence for heterogeneity in the distribution of RNAP2 along the length of the gene as well as Serine 5 phosphorylated RNAP2 clusters that remain separated in both space and time from nascent mRNA synthesis. Computational models determine that 5 to 40 RNAP2 cluster around the promoter during a typical transcriptional burst, with most phosphorylated at Serine 5 within 6 seconds of arrival and roughly half escaping the promoter in ~1.5 minutes. Taken together, our data provide live-cell support for the notion of efficient transcription clusters that transiently form around promoters and contain high concentrations of RNAP2 phosphorylated at Serine 5.


Asunto(s)
Microscopía Intravital/métodos , ARN Polimerasa II/metabolismo , Imagen Individual de Molécula/métodos , Transcripción Genética , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Microscopía Fluorescente , Fosforilación , Regiones Promotoras Genéticas , ARN Mensajero/biosíntesis , Serina/metabolismo , Análisis Espacio-Temporal , Imagen de Lapso de Tiempo
12.
Front Microbiol ; 12: 799014, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126334

RESUMEN

Rapid microbial growth in the early phase of plant litter decomposition is viewed as an important component of soil organic matter (SOM) formation. However, the microbial taxa and chemical substrates that correlate with carbon storage are not well resolved. The complexity of microbial communities and diverse substrate chemistries that occur in natural soils make it difficult to identify links between community membership and decomposition processes in the soil environment. To identify potential relationships between microbes, soil organic matter, and their impact on carbon storage, we used sand microcosms to control for external environmental factors such as changes in temperature and moisture as well as the variability in available carbon that exist in soil cores. Using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) on microcosm samples from early phase litter decomposition, we found that protein- and tannin-like compounds exhibited the strongest correlation to dissolved organic carbon (DOC) concentration. Proteins correlated positively with DOC concentration, while tannins correlated negatively with DOC. Through random forest, neural network, and indicator species analyses, we identified 42 bacterial and 9 fungal taxa associated with DOC concentration. The majority of bacterial taxa (26 out of 42 taxa) belonged to the phylum Proteobacteria while all fungal taxa belonged to the phylum Ascomycota. Additionally, we identified significant connections between microorganisms and protein-like compounds and found that most taxa (12/14) correlated negatively with proteins indicating that microbial consumption of proteins is likely a significant driver of DOC concentration. This research links DOC concentration with microbial production and/or decomposition of specific metabolites to improve our understanding of microbial metabolism and carbon persistence.

13.
Front Microbiol ; 11: 542220, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240225

RESUMEN

Discovering widespread microbial processes that drive unexpected variation in carbon cycling may improve modeling and management of soil carbon (Prescott, 2010; Wieder et al., 2015a, 2018). A first step is to identify community features linked to carbon cycle variation. We addressed this challenge using an epidemiological approach with 206 soil communities decomposing Ponderosa pine litter in 618 microcosms. Carbon flow from litter decomposition was measured over a 6-week incubation. Cumulative CO2 from microbial respiration varied two-fold among microcosms and dissolved organic carbon (DOC) from litter decomposition varied five-fold, demonstrating large functional variation despite constant environmental conditions where strong selection is expected. To investigate microbial features driving DOC concentration, two microbial community cohorts were delineated as "high" and "low" DOC. For each cohort, communities from the original soils and from the final microcosm communities after the 6-week incubation with litter were taxonomically profiled. A logistic model including total biomass, fungal richness, and bacterial richness measured in the original soils or in the final microcosm communities predicted the DOC cohort with 72 (P < 0.05) and 80 (P < 0.001) percent accuracy, respectively. The strongest predictors of the DOC cohort were biomass and either fungal richness (in the original soils) or bacterial richness (in the final microcosm communities). Successful forecasting of functional patterns after lengthy community succession in a new environment reveals strong historical contingencies. Forecasting future community function is a key advance beyond correlation of functional variance with end-state community features. The importance of taxon richness-the same feature linked to carbon fate in gut microbiome studies-underscores the need for increased understanding of biotic mechanisms that can shape richness in microbial communities independent of physicochemical conditions.

14.
Nat Struct Mol Biol ; 27(12): 1209-1210, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33110260

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
iScience ; 23(10): 101565, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33083733

RESUMEN

Computationally understanding the molecular mechanisms that give rise to cell signaling responses upon different environmental, chemical, and genetic perturbations is a long-standing challenge that requires models that fit and predict quantitative responses for new biological conditions. Overcoming this challenge depends not only on good models and detailed experimental data but also on the rigorous integration of both. We propose a quantitative framework to perturb and model generic signaling networks using multiple and diverse changing environments (hereafter "kinetic stimulations") resulting in distinct pathway activation dynamics. We demonstrate that utilizing multiple diverse kinetic stimulations better constrains model parameters and enables predictions of signaling dynamics that would be impossible using traditional dose-response or individual kinetic stimulations. To demonstrate our approach, we use experimentally identified models to predict signaling dynamics in normal, mutated, and drug-treated conditions upon multitudes of kinetic stimulations and quantify which proteins and reaction rates are most sensitive to which extracellular stimulations.

16.
Complexity ; 20202020.
Artículo en Inglés | MEDLINE | ID: mdl-32982137

RESUMEN

Modern biological experiments are becoming increasingly complex, and designing these experiments to yield the greatest possible quantitative insight is an open challenge. Increasingly, computational models of complex stochastic biological systems are being used to understand and predict biological behaviors or to infer biological parameters. Such quantitative analyses can also help to improve experiment designs for particular goals, such as to learn more about specific model mechanisms or to reduce prediction errors in certain situations. A classic approach to experiment design is to use the Fisher information matrix (FIM), which quantifies the expected information a particular experiment will reveal about model parameters. The Finite State Projection based FIM (FSP-FIM) was recently developed to compute the FIM for discrete stochastic gene regulatory systems, whose complex response distributions do not satisfy standard assumptions of Gaussian variations. In this work, we develop the FSP-FIM analysis for a stochastic model of stress response genes in S. cerevisae under time-varying MAPK induction. We verify this FSP-FIM analysis and use it to optimize the number of cells that should be quantified at particular times to learn as much as possible about the model parameters. We then extend the FSP-FIM approach to explore how different measurement times or genetic modifications help to minimize uncertainty in the sensing of extracellular environments, and we experimentally validate the FSP-FIM to rank single-cell experiments for their abilities to minimize estimation uncertainty of NaCl concentrations during yeast osmotic shock. This work demonstrates the potential of quantitative models to not only make sense of modern biological data sets, but to close the loop between quantitative modeling and experimental data collection.

17.
Nat Struct Mol Biol ; 27(12): 1095-1104, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32958947

RESUMEN

Viruses use internal ribosome entry sites (IRES) to hijack host ribosomes and promote cap-independent translation. Although they are well-studied in bulk, the dynamics of IRES-mediated translation remain unexplored at the single-molecule level. Here, we developed a bicistronic biosensor encoding distinct repeat epitopes in two open reading frames (ORFs), one translated from the 5' cap, and the other from the encephalomyocarditis virus IRES. When combined with a pair of complementary probes that bind the epitopes cotranslationally, the biosensor lights up in different colors depending on which ORF is translated. Using the sensor together with single-molecule tracking and computational modeling, we measured the kinetics of cap-dependent versus IRES-mediated translation in living human cells. We show that bursts of IRES translation are shorter and rarer than bursts of cap translation, although the situation reverses upon stress. Collectively, our data support a model for translational regulation primarily driven by transitions between translationally active and inactive RNA states.


Asunto(s)
Virus de la Encefalomiocarditis/genética , Células Epiteliales/metabolismo , Sitios Internos de Entrada al Ribosoma , Biosíntesis de Proteínas , Caperuzas de ARN/genética , Emparejamiento Base , Técnicas Biosensibles , Línea Celular Tumoral , Virus de la Encefalomiocarditis/metabolismo , Células Epiteliales/virología , Epítopos/química , Epítopos/genética , Epítopos/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Secuencias Invertidas Repetidas , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Imagen Individual de Molécula/métodos
18.
FEMS Microbiol Ecol ; 96(8)2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32627825

RESUMEN

Discovering widespread microbial processes that create variation in soil carbon (C) cycling within ecosystems may improve soil C modeling. Toward this end, we screened 206 soil communities decomposing plant litter in a common garden microcosm environment and examined features linked to divergent patterns of C flow. C flow was measured as carbon dioxide (CO2) and dissolved organic carbon (DOC) from 44-days of litter decomposition. Two large groups of microbial communities representing 'high' and 'low' DOC phenotypes from original soil and 44-day microcosm samples were down-selected for fungal and bacterial profiling. Metatranscriptomes were also sequenced from a smaller subset of communities in each group. The two groups exhibited differences in average rate of CO2 production, demonstrating that the divergent patterns of C flow arose from innate functional constraints on C metabolism, not a time-dependent artefact. To infer functional constraints, we identified features - traits at the organism, pathway or gene level - linked to the high and low DOC phenotypes using RNA-Seq approaches and machine learning approaches. Substrate use differed across the high and low DOC phenotypes. Additional features suggested that divergent patterns of C flow may be driven in part by differences in organism interactions that affect DOC abundance directly or indirectly by controlling community structure.


Asunto(s)
Microbiota , Suelo , Bacterias/genética , Dióxido de Carbono , Plantas , Microbiología del Suelo
19.
Int J Uncertain Quantif ; 10(6): 515-542, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34007522

RESUMEN

Stochastic reaction network models are often used to explain and predict the dynamics of gene regulation in single cells. These models usually involve several parameters, such as the kinetic rates of chemical reactions, that are not directly measurable and must be inferred from experimental data. Bayesian inference provides a rigorous probabilistic framework for identifying these parameters by finding a posterior parameter distribution that captures their uncertainty. Traditional computational methods for solving inference problems such as Markov Chain Monte Carlo methods based on classical Metropolis-Hastings algorithm involve numerous serial evaluations of the likelihood function, which in turn requires expensive forward solutions of the chemical master equation (CME). We propose an alternate approach based on a multifidelity extension of the Sequential Tempered Markov Chain Monte Carlo (ST-MCMC) sampler. This algorithm is built upon Sequential Monte Carlo and solves the Bayesian inference problem by decomposing it into a sequence of efficiently solved subproblems that gradually increase both model fidelity and the influence of the observed data. We reformulate the finite state projection (FSP) algorithm, a well-known method for solving the CME, to produce a hierarchy of surrogate master equations to be used in this multifidelity scheme. To determine the appropriate fidelity, we introduce a novel information-theoretic criteria that seeks to extract the most information about the ultimate Bayesian posterior from each model in the hierarchy without inducing significant bias. This novel sampling scheme is tested with high performance computing resources using biologically relevant problems.

20.
PLoS Comput Biol ; 15(10): e1007425, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31618265

RESUMEN

Advances in fluorescence microscopy have introduced new assays to quantify live-cell translation dynamics at single-RNA resolution. We introduce a detailed, yet efficient sequence-based stochastic model that generates realistic synthetic data for several such assays, including Fluorescence Correlation Spectroscopy (FCS), ribosome Run-Off Assays (ROA) after Harringtonine application, and Fluorescence Recovery After Photobleaching (FRAP). We simulate these experiments under multiple imaging conditions and for thousands of human genes, and we evaluate through simulations which experiments are most likely to provide accurate estimates of elongation kinetics. Finding that FCS analyses are optimal for both short and long length genes, we integrate our model with experimental FCS data to capture the nascent protein statistics and temporal dynamics for three human genes: KDM5B, ß-actin, and H2B. Finally, we introduce a new open-source software package, RNA Sequence to NAscent Protein Simulator (rSNAPsim), to easily simulate the single-molecule translation dynamics of any gene sequence for any of these assays and for different assumptions regarding synonymous codon usage, tRNA level modifications, or ribosome pauses. rSNAPsim is implemented in Python and is available at: https://github.com/MunskyGroup/rSNAPsim.git.


Asunto(s)
ARN Mensajero/metabolismo , ARN/metabolismo , Ribosomas/metabolismo , Biología Computacional/métodos , Simulación por Computador , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Cinética , Microscopía Fluorescente , Biosíntesis de Proteínas , Proteínas/metabolismo , ARN/fisiología , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...