Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Biomolecules ; 14(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38672515

Cerebrovascular disease accounts for major neurologic disabilities in patients with type 2 diabetes mellitus (DM). A potential association of mitochondrial DNA (mtDNA) and inflammation with cerebral vessel remodeling in patients with type 2 DM was evaluated. A cohort of 150 patients and 30 healthy controls were assessed concerning urinary albumin/creatinine ratio (UACR), synaptopodin, podocalyxin, kidney injury molecule-1 (KIM-1), N-acetyl-ß-(D)-glucosaminidase (NAG), interleukins IL-17A, IL-18, IL-10, tumor necrosis factor-alpha (TNFα), intercellular adhesion molecule-1 (ICAM-1). MtDNA-CN and nuclear DNA (nDNA) were quantified in peripheral blood and urine by qRT-PCR. Cytochrome b (CYTB) gene, subunit 2 of NADH dehydrogenase (ND2), and beta 2 microglobulin nuclear gene (B2M) were assessed by TaqMan assays. mtDNA-CN was defined as the ratio of the number of mtDNA/nDNA copies, through analysis of the CYTB/B2M and ND2/B2M ratio; cerebral Doppler ultrasound: intima-media thickness (IMT)-the common carotid arteries (CCAs), the pulsatility index (PI) and resistivity index (RI)- the internal carotid arteries (ICAs) and middle cerebral arteries (MCAs), the breath-holding index (BHI). The results showed direct correlations of CCAs-IMT, PI-ICAs, PI-MCAs, RI-ICAs, RI-MCAs with urinary mtDNA, IL-17A, IL-18, TNFα, ICAM-1, UACR, synaptopodin, podocalyxin, KIM-1, NAG, and indirect correlations with serum mtDNA, IL-10. BHI correlated directly with serum IL-10, and serum mtDNA, and negatively with serum IL-17A, serum ICAM-1, and NAG. In neurologically asymptomatic patients with type 2 DM cerebrovascular remodeling and impaired cerebrovascular reactivity may be associated with mtDNA variations and inflammation from the early stages of diabetic kidney disease.


DNA, Mitochondrial , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Inflammation , Humans , DNA, Mitochondrial/genetics , Male , Female , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Middle Aged , Inflammation/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Aged , Vascular Remodeling/genetics , Case-Control Studies
2.
Mol Cell Biochem ; 2023 Jul 24.
Article En | MEDLINE | ID: mdl-37486451

Acetaminophen and ibuprofen are widely used over-the-counter medications to reduce fever, pain, and inflammation. Although both drugs are safe in therapeutic concentrations, self-medication is practiced by millions of aged patients with comorbidities that decrease drug metabolism and/or excretion, thus raising the risk of overdosage. Mitochondrial dysfunction has emerged as an important pathomechanism underlying the organ toxicity of both drugs. Assessment of mitochondrial oxygen consumption in peripheral blood cells is a novel research field Cu several applications, including characterization of drug toxicity. The present study, conducted in human platelets isolated from blood donor-derived buffy coat, was aimed at assessing the acute, concentration-dependent effects of each drug on mitochondrial respiration. Using the high-resolution respirometry technique, a concentration-dependent decrease of oxygen consumption in both intact and permeabilized platelets was found for either drug, mainly by inhibiting complex I-supported active respiration. Moreover, ibuprofen significantly decreased the maximal capacity of the electron transport system already from the lowest concentration. In conclusion, platelets from healthy donors represents a population of cells easily available, which can be routinely used in studies assessing mitochondrial drug toxicity. Whether these results can be recapitulated in patients treated with these medications is worth further investigation as potential peripheral biomarker of drug overdose.

3.
Int J Mol Sci ; 24(12)2023 Jun 06.
Article En | MEDLINE | ID: mdl-37372951

Mitochondrial dysfunction is an important mechanism contributing to the development and progression of diabetic kidney disease (DKD). Mitochondrial DNA (mtDNA) levels in blood and urine were evaluated in relation to podocyte injury and proximal tubule (PT) dysfunction, as well as to a specific inflammatory response in normoalbuminuric DKD. A total of 150 type 2 diabetes mellitus (DM) patients (52 normoalbuminuric, 48 microalbuminuric, and 50 macroalbuminuric ones, respectively) and 30 healthy controls were assessed concerning the urinary albumin/creatinine ratio (UACR), biomarkers of podocyte damage (synaptopodin and podocalyxin), PT dysfunction (kidney injury molecule-1 (KIM-1) and N-acetyl-ß-(D)-glucosaminidase (NAG)), and inflammation (serum and urinary interleukins (IL-17A, IL-18, and IL-10)). MtDNA-CN and nuclear DNA (nDNA) were quantified in peripheral blood and urine via qRT-PCR. MtDNA-CN was defined as the ratio of the number of mtDNA/nDNA copies via analysis of the CYTB/B2M and ND2/B2M ratio. Multivariable regression analysis provided models in which serum mtDNA directly correlated with IL-10 and indirectly correlated with UACR, IL-17A, and KIM-1 (R2 = 0.626; p < 0.0001). Urinary mtDNA directly correlated with UACR, podocalyxin, IL-18, and NAG, and negatively correlated with eGFR and IL-10 (R2 = 0.631; p < 0.0001). Mitochondrial DNA changes in serum and urine display a specific signature in relation to inflammation both at the podocyte and tubular levels in normoalbuminuric type 2 DM patients.


Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Interleukin-10 , Interleukin-17 , Interleukin-18/genetics , DNA, Mitochondrial/genetics , Albuminuria/urine , Inflammation/genetics , Mitochondria/genetics , Biomarkers/urine
4.
Life (Basel) ; 12(12)2022 Dec 08.
Article En | MEDLINE | ID: mdl-36556423

Metformin, the first-line drug in type 2 diabetes mellitus, elicits cardiovascular protection also in obese patients via pleiotropic effects, among which the anti-oxidant is one of the most investigated. The aim of the present study was to assess whether metformin can acutely mitigate oxidative stress in atrial tissue harvested from overweight non-diabetic patients. Right atrial appendage samples were harvested during open-heart surgery and used for the evaluation of reactive oxygen species (ROS) production by means of confocal microscopy (superoxide anion) and spectrophotometry (hydrogen peroxide). Experiments were performed after acute incubation with metformin (10 µM) in the presence vs. absence of angiotensin II (AII, 100 nM), lipopolysaccharide (LPS, 1 µg/mL), and high glucose (Gluc, 400 mg/dL). Stimulation with AII, LPS, and high Gluc increased ROS production. The magnitude of oxidative stress correlated with several echocardiographic parameters. Metformin applied in the lowest therapeutic concentration (10 µM) was able to decrease ROS generation in stimulated but also non-stimulated atrial samples. In conclusion, in a pilot group of overweight non-diabetic cardiac patients, acute incubation with metformin at a clinically relevant dose alleviated oxidative stress both in basal conditions and conditions that mimicked the activation of the renin-angiotensin-aldosterone system, acute inflammation, and uncontrolled hyperglycemia.

5.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article En | MEDLINE | ID: mdl-36012137

Mitochondrial dysfunction has emerged as a central pathomechanism in the setting of obesity and diabetes mellitus, linking these intertwined pathologies that share insulin resistance as a common denominator. High-resolution respirometry (HRR) is a state-of-the-art research method currently used to study mitochondrial respiration and its impairment in health and disease. Tissue samples, cells or isolated mitochondria are exposed to various substrate-uncoupler-inhibitor-titration protocols, which allows the measurement and calculation of several parameters of mitochondrial respiration. In this review, we discuss the alterations of mitochondrial bioenergetics in the main dysfunctional organs that contribute to the development of the obese and diabetic phenotypes in both animal models and human subjects. Herein we review data regarding the impairment of oxidative phosphorylation as integrated mitochondrial function assessed by means of HRR. We acknowledge the critical role of this method in determining the alterations in oxidative phosphorylation occurring in the early stages of metabolic pathologies. We conclude that there is a mutual two-way relationship between mitochondrial dysfunction and insulin insensitivity that characterizes these diseases.


Insulin Resistance , Mitochondria , Animals , Cell Respiration , Humans , Mitochondria/metabolism , Obesity/metabolism , Oxidative Phosphorylation , Respiration
6.
Life (Basel) ; 11(4)2021 Mar 28.
Article En | MEDLINE | ID: mdl-33800630

Diabetes mellitus (DM) is the most severe metabolic disease that reached the level of a global pandemic and is associated with high cardiovascular morbidity. Statins are the first-line lipid-lowering therapy in diabetic patients with or without a history of atherosclerotic disease. Although well tolerated, chronic treatment may result in side effects that lead to treatment interruption. Mitochondrial dysfunction has emerged as a central pathomechanism in DM- and statin-induced side effects. Assessment of mitochondrial respiration in peripheral platelets has been increasingly used as a mirror of organ mitochondrial dysfunction. The present study aimed to assess the: (i) changes in mitochondrial respiration elicited by statins in patients with type 2 DM and (ii) the effects of cell-permeable succinate (NV118) on respiratory parameters in platelets harvested from these patients. No significant changes were found in global mitochondrial respiration of intact platelets isolated from diabetic patients treated with either atorvastatin or rosuvastatin. Similarly, no significant changes in mitochondrial respiration of permeabilized platelets were found between diabetic patients treated with atorvastatin and healthy controls. Acute ex vivo administration of NV118 significantly improved respiration in isolated platelets. These results prompt further research on the role of permeable succinate as a therapeutic alternative for improving mitochondrial function in metabolic pathologies and point to the role of peripheral platelets as a potential biomarker of treatment response.

7.
Int J Mol Sci ; 22(2)2021 Jan 16.
Article En | MEDLINE | ID: mdl-33467058

Vascular dysfunction in cardiovascular diseases includes vasomotor response impairments, endothelial cells (ECs) activation, and smooth muscle cells (SMCs) proliferation and migration to the intima. This results in intimal hyperplasia and vessel failure. We previously reported that activation of the P2Y11 receptor (P2Y11R) in human dendritic cells, cardiofibroblasts and cardiomyocytes was protective against hypoxia/reoxygenation (HR) lesions. In this study, we investigated the role of P2Y11R signaling in vascular dysfunction. P2Y11R activity was modulated using its pharmacological agonist NF546 and antagonist NF340. Rat aortic rings were exposed to angiotensin II (AngII) and evaluated for their vasomotor response. The P2Y11R agonist NF546 reduced AngII-induced vascular dysfunction by promoting EC-dependent vasorelaxation, through an increased nitric oxide (NO) bioavailability and reduced AngII-induced H2O2 release; these effects were prevented by the use of the P2Y11R antagonist NF340. Human vascular SMCs and ECs were subjected to AngII or H/R simulation in vitro. P2Y11R agonist modulated vasoactive factors in human ECs, that is, endothelial nitric oxide synthase (eNOS) and endothelin-1, reduced SMC proliferation and prevented the switch towards a synthetic phenotype. H/R and AngII increased ECs secretome-induced SMC proliferation, an effect prevented by P2Y11R activation. Thus, our data suggest that P2Y11R activation may protect blood vessels from HR-/AngII-induced injury and reduce vascular dysfunctions. These results open the way for new vasculoprotective interventions.


Diphosphonates/pharmacology , Naphthalenesulfonates/pharmacology , Purinergic P2 Receptor Agonists/pharmacology , Receptors, Purinergic P2/metabolism , Reperfusion Injury/metabolism , Tunica Intima/pathology , Angiotensin II/toxicity , Animals , Aorta/drug effects , Aorta/metabolism , Aorta/pathology , Aorta/physiopathology , Diphosphonates/therapeutic use , Endothelin-1/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hyperplasia/prevention & control , Male , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Naphthalenesulfonates/therapeutic use , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Purinergic P2 Receptor Agonists/therapeutic use , Rats , Rats, Wistar , Reperfusion Injury/drug therapy , Tunica Intima/drug effects , Tunica Intima/metabolism , Vasodilation , Water/metabolism
8.
Front Physiol ; 12: 768383, 2021.
Article En | MEDLINE | ID: mdl-34975524

Caloric restriction (CR) and intermittent fasting (IF) are strategies aimed to promote health beneficial effects by interfering with several mechanisms responsible for cardiovascular diseases. Both dietary approaches decrease body weight, insulin resistance, blood pressure, lipids, and inflammatory status. All these favorable effects are the result of several metabolic adjustments, which have been addressed in this review, i.e., the improvement of mitochondrial biogenesis, the reduction of reactive oxygen species (ROS) production, and the improvement of cardiac and vascular function. CR and IF are able to modulate mitochondrial function via interference with dynamics (i.e., fusion and fission), respiration, and related oxidative stress. In the cardiovascular system, both dietary interventions are able to improve endothelium-dependent relaxation, reduce cardiac hypertrophy, and activate antiapoptotic signaling cascades. Further clinical studies are required to assess the long-term safety in the clinical setting.

9.
Molecules ; 24(18)2019 Sep 16.
Article En | MEDLINE | ID: mdl-31527469

The present study aimed to assess the phenolic content of eight ethanolic propolis samples (P1-P8) harvested from different regions of Western Romania and their antioxidant activity. The mean value of total phenolic content was 214 ± 48 mg gallic acid equivalents (GAE)/g propolis. All extracts contained kaempferol (514.02 ± 114.80 µg/mL), quercetin (124.64 ± 95.86 µg/mL), rosmarinic acid (58.03 ± 20.08 µg/mL), and resveratrol (48.59 ± 59.52 µg/mL) assessed by LC-MS. The antioxidant activity was evaluated using 2 methods: (i) DPPH (2,2-diphenyl-1-picrylhydrazyl) assay using ascorbic acid as standard antioxidant and (ii) FOX (Ferrous iron xylenol orange OXidation) assay using catalase as hydrogen peroxide (H2O2) scavenger. The DPPH radical scavenging activity was determined for all samples applied in 6 concentrations (10, 5, 3, 1.5, 0.5 and 0.3 mg/mL). IC50 varied from 0.0700 to 0.9320 mg/mL (IC50 of ascorbic acid = 0.0757 mg/mL). The % of H2O2 inhibition in FOX assay was assessed for P1, P2, P3, P4 and P8 applied in 2 concentrations (5 and 0.5 mg/mL). A significant H2O2% inhibition was obtained for these samples for the lowest concentration. We firstly report the presence of resveratrol as bioactive compound in Western Romanian propolis. The principal component analysis revealed clustering of the propolis samples according to the polyphenolic profile similarity.


Antioxidants/pharmacology , Phenols/pharmacology , Plant Extracts/pharmacology , Propolis/chemistry , Resveratrol/pharmacology , Antioxidants/chemistry , Chromatography, Liquid , Cluster Analysis , Ethanol , Mass Spectrometry , Phenols/chemistry , Plant Extracts/chemistry , Polyphenols , Resveratrol/chemistry , Solvents
10.
Int J Mol Sci ; 20(11)2019 Jun 10.
Article En | MEDLINE | ID: mdl-31185643

Maslinic acid is a pentacyclic triterpene with a plethora of biological activities, including anti-inflammatory, antioxidant, antimicrobial, cardioprotective, and antitumor effects. New derivatives with improved properties and broad-spectrum activity can be obtained following structural changes of the compound. The present study was aimed to characterize a benzylamide derivative of maslinic acid-benzyl (2α, 3ß) 2,3-diacetoxy-olean-12-en-28-amide (EM2)-with respect to the anti-angiogenic and anti-inflammatory effects in two in vivo experimental models. Consequently, the compound showed good tolerability and lack of irritation in the chorioallantoic membrane assay with no impairment of the normal angiogenic process during the tested stages of development. In the acute ear inflammation murine model, application of EM2 induced a mild anti-inflammatory effect that was potentiated by the association with zinc chloride (ZnCl2). A decrease in dermal thickness of mice ears was observed when EM2 and ZnCl2 were applied separately or in combination. Moreover, hyalinization of the dermis appeared only when EM2 was associated with ZnCl2, strongly suggesting the role of their combination in wound healing.


Angiogenesis Inhibitors/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Otitis/drug therapy , Triterpenes/therapeutic use , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/adverse effects , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/adverse effects , Chick Embryo , Chlorides/administration & dosage , Chlorides/therapeutic use , Chorioallantoic Membrane/drug effects , Drug Therapy, Combination , Female , Mice , Triterpenes/administration & dosage , Triterpenes/adverse effects , Zinc Compounds/administration & dosage , Zinc Compounds/therapeutic use
11.
Anal Cell Pathol (Amst) ; 2016: 2787623, 2016.
Article En | MEDLINE | ID: mdl-28050335

Maslinic acid is a pentacyclic triterpene extracted from olives that has been systematically reported to exert several therapeutic effects, such as antitumoral, antidiabetic, antioxidant, anti-inflammatory, antiparasitic, and antiviral properties. Recently, new derivatives of maslinic acid have been obtained and expanded the spectrum of biological activities and improved the existing ones. The present study was meant to perform the in vitro assessment of the (i) cytotoxic effects of a benzylamide derivative of maslinic acid ("EM2") (benzyl (2α, 3ß) 2,3-diacetoxy-olean-12-en-28-amide) on B164A5 murine melanoma and A375 human malignant melanoma cell lines and the (ii) antimicrobial activity of the compound on several bacterial strains, respectively. We obtained a dose-dependent cytotoxic effect of EM2 that was particularly relevant to the murine cell line. As on the antibacterial activity, EM2 was tested on 10 bacterial strains Bacillus cereus, Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Enterococcus faecalis, Escherichia coli, Yersinia enterocolitica, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa and one fungus Candida albicans. A significant antimicrobial effect was recorded for Streptococcus pyogenes and Staphylococcus aureus.


Anti-Infective Agents/pharmacology , Benzamides/pharmacology , Melanoma/pathology , Triterpenes/pharmacology , Animals , Anti-Infective Agents/chemistry , Antifungal Agents/pharmacology , Bacteria/drug effects , Benzamides/chemistry , Cell Death/drug effects , Cell Line, Tumor , Fungi/drug effects , Humans , Mice , Microbial Sensitivity Tests , Triterpenes/chemistry
12.
Rev Med Chir Soc Med Nat Iasi ; 119(2): 491-5, 2015.
Article En | MEDLINE | ID: mdl-26204657

UNLABELLED: The aim of the present work was to standardize the working methodology for assessing the bioenergetic profile of H9c2 cardiomyoblasts cells, with reference to the optimization of cell seeding number and the establishment of favorable concentrations for the classic modulators of mitochondrial respiratory function, in particular the one of a classical uncoupler, FCCP. MATERIAL AND METHODS: The extracellular flux analyzer (XF, Seahorse Bioscience) is a novel high-throughput instrument able to monitor the metabolism of living cells by simultaneously measuring mitochondrial respiration and glycolysis. The in vitro platform will be further used to better understand the pathophysiology and the unrecognized side effects of drugs currently used in the therapy of major cardiovascular diseases. CONCLUSIONS: In the long run, characterization of novel pharmacological agents' effects on other cell lines, including tumoral ones, will be also considered.


Energy Metabolism , Glycolysis , Metabolic Flux Analysis , Mitochondria/metabolism , Myoblasts, Cardiac/metabolism , Animals , Cell Line , Metabolic Flux Analysis/instrumentation , Metabolic Flux Analysis/methods , Rats , Reference Standards
13.
Int J Artif Organs ; 37(6): 436-41, 2014 Jun.
Article En | MEDLINE | ID: mdl-24970557

INTRODUCTION: Small animal models are used extensively in basic research because of their low cost and possibility to mimic several human pathologies. These models are used to either analyze the underlying mechanisms and/or assess therapeutic approaches. In this respect, gentle and safe artificial ventilation is mandatory, especially for prolonged experimental procedures that require the survival of the animals. The aim of the present paper was to develop and validate a high-performance anesthesia ventilator for small animals. METHODS: A pressure-controlled ventilator with assisted ventilation and deep breath modulated on a scheduled basis and a PEEP facility for an improved anesthetic management was developed. Parameters of acid-base balance and arterial blood gases were measured initially at the end of arterial catheterization and monitored throughout the experiment. RESULTS: Our data show the following average values (mmHg) for pO2: 440 +/- 45 (initial), 378 +/- 24 (2 h), 373 +/- 22 (4 h), and 375 +/- 28 (6 h) and for pCO2: 35 +/- 3 (initial), 34 +/- 5 (2 h), 38 +/- 5 (4 h), and 40 +/- 6 (6 h), respectively. CONCLUSIONS: We describe the procedure for the manufacture of a reliable, high-performance anesthesia ventilator that facilitates recovery of spontaneous respiration at animal arousal with preservation of normal blood gases values and no damage to the lungs.


Anesthesiology/instrumentation , Research/instrumentation , Respiration, Artificial/instrumentation , Ventilators, Mechanical , Animals , Monitoring, Physiologic , Rodentia
...