Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Reprod Med Biol ; 23(1): e12608, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39318590

RESUMEN

Case: A 40-year-old Japanese man with nonobstructive azoospermia (NOA) was found to carry rare variants in KCTD19, a newly identified causative gene for spermatogenic failure. This patient was identified through mutation screening of KCTD19 in 97 men with etiology-unknown isolated NOA. Outcome: The patient had two heterozygous variants in KCTD19 that affect consensus sequences of splice-donor sites [c.300+2T>A and c.2667C>T (p.E889E)]. Both variants were predicted to cause exon skipping. Long-read sequencing confirmed the compound heterozygosity of the variants. The patient exhibited small testes and a mildly elevated level of follicle-stimulating hormone but no other phenotypic abnormalities. Testicular histology showed borderline findings between spermatocyte maturation arrest and severe hypospermatogenesis. Conclusion: These results provide evidence that biallelic loss-of-function variants of KCTD19 represent rare causes of isolated NOA.

2.
Clin Pediatr Endocrinol ; 33(3): 169-173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993717

RESUMEN

Noonan syndrome is a congenital disorder characterized by distinctive facial appearance, congenital heart defects, short stature, and skeletal dysplasia. Although boys with Noonan syndrome frequently exhibit cryptorchidism, a mild form of 46,XY disorders of sex development (DSD), they barely manifest more severe genital abnormalities. Here, we report a boy with ambiguous genitalia, short stature, and non-specific dysmorphic features. He had no cardiac abnormalities or skeletal dysplasia. His score in the Noonan syndrome diagnostic criteria (36 of 157 points, 23%) was lower than the cutoff for diagnosis (50%). Whole-exome sequencing identified a de novo heterozygous variant (c.922A>G: p.Asn308Asp) in PTPN11 and a maternally inherited hemizygous variant (c.1439C>T: p.Pro480Leu) in FLNA. The PTPN11 variant was a known causative mutation for Noonan syndrome. FLNA is a causative gene for neurodevelopmental and skeletal abnormalities and has also been implicated in 46,XY DSD. The p.Pro480Leu variant of FLNA was assessed as deleterious by in silico analyses. These results provide evidence that whole-exome sequencing is a powerful tool for diagnosing patients with atypical disease manifestations. Furthermore, our data suggest a possible role of digenic mutations as phenotypic modifiers of Noonan syndrome.

3.
Biology (Basel) ; 13(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38785767

RESUMEN

Adipose tissue plays an important role in regulating body temperature and metabolism, with white adipocytes serving as storage units for energy. Recent research focused on the browning of white adipocytes (beige adipocytes), causing thermogenesis and lipolysis. The process of browning is linked to the activation of uncoupling protein (UCP) expression, which can be mediated by the ß3 adrenergic receptor pathway. Transcriptional factors, such as peroxisome proliferator activated receptor γ (PPARγ) and PPARγ coactivator 1 alpha, play vital roles in cell fate determination for fat cells. Beige adipocytes have metabolic therapeutic potential to combat diseases such as obesity, diabetes mellitus, and dyslipidemia, owing to their significant impact on metabolic functions. However, the molecular mechanisms that cause the induction of browning are unclear. Therefore, research using animal models and primary culture is essential to provide an understanding of browning for further application in human metabolic studies. Pigs have physiological similarities to humans; hence, they are valuable models for research on adipose tissue. This study demonstrates the browning potential of pig white adipocytes through primary culture experiments. The results show that upregulation of UCP3 gene expression and fragmentation of lipid droplets into smaller particles occur due to isoproterenol stimulation, which activates beta-adrenergic receptor signaling. Furthermore, PPARγ and PGC-1α were found to activate the UCP3 promoter region, similar to that of UCP1. These findings suggest that pigs undergo metabolic changes that induce browning in white adipocytes, providing a promising approach for metabolic research with potential implications for human health. This study offers valuable insights into the mechanism of adipocyte browning using pig primary culture that can enhance our understanding of human metabolism, leading to cures for commonly occurring diseases.

4.
Hum Reprod ; 39(5): 1131-1140, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511217

RESUMEN

STUDY QUESTION: Do copy-number variations (CNVs) in the azoospermia factor (AZF) regions and monogenic mutations play a major role in the development of isolated (non-syndromic) non-obstructive azoospermia (NOA) in Japanese men with a normal 46, XY karyotype? SUMMARY ANSWER: Deleterious CNVs in the AZF regions and damaging sequence variants in eight genes likely constitute at least 8% and approximately 8% of the genetic causes, respectively, while variants in other genes play only a minor role. WHAT IS KNOWN ALREADY: Sex chromosomal abnormalities, AZF-linked microdeletions, and monogenic mutations have been implicated in isolated NOA. More than 160 genes have been reported as causative/susceptibility/candidate genes for NOA. STUDY DESIGN, SIZE, DURATION: Systematic molecular analyses were conducted for 115 patients with isolated NOA and a normal 46, XY karyotype, who visited our hospital between 2017 and 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS: We studied 115 unrelated Japanese patients. AZF-linked CNVs were examined using sequence-tagged PCR and multiplex ligation-dependent probe amplification, and nucleotide variants were screened using whole exome sequencing (WES). An optimized sequence kernel association test (SKAT-O), a gene-based association study using WES data, was performed to identify novel disease-associated genes in the genome. The results were compared to those of previous studies and our in-house control data. MAIN RESULTS AND THE ROLE OF CHANCE: Thirteen types of AZF-linked CNVs, including the hitherto unreported gr/gr triplication and partial AZFb deletion, were identified in 63 (54.8%) cases. When the gr/gr deletion, a common polymorphism in Japan, was excluded from data analyses, the total frequency of CNVs was 23/75 (30.7%). This frequency is higher than that of the reference data in Japan and China (11.1% and 14.7%, respectively). Known NOA-causative AZF-linked CNVs were found in nine (7.8%) cases. Rare damaging variants in known causative genes (DMRT1, PLK4, SYCP2, TEX11, and USP26) and hemizygous/multiple-heterozygous damaging variants in known spermatogenesis-associated genes (TAF7L, DNAH2, and DNAH17) were identified in nine cases (7.8% in total). Some patients carried rare damaging variants in multiple genes. SKAT-O detected no genes whose rare damaging variants were significantly accumulated in the patient group. LIMITATIONS, REASONS FOR CAUTION: The number of participants was relatively small, and the clinical information of each patient was fragmentary. Moreover, the pathogenicity of identified variants was assessed only by in silico analyses. WIDER IMPLICATIONS OF THE FINDINGS: This study showed that various AZF-linked CNVs are present in more than half of Japanese NOA patients. These results broadened the structural variations of AZF-linked CNVs, which should be considered for the molecular diagnosis of spermatogenic failure. Furthermore, the results of this study highlight the etiological heterogeneity and possible oligogenicity of isolated NOA. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by Grants from the Japan Society for the Promotion of Science (21K19283 and 21H0246), the Japan Agency for Medical Research and Development (22ek0109464h0003), the National Center for Child Health and Development, the Canon Foundation, the Japan Endocrine Society, and the Takeda Science Foundation. The results of this study were based on samples and patient data obtained from the International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan. The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Azoospermia , Proteínas de Ciclo Celular , Variaciones en el Número de Copia de ADN , Humanos , Azoospermia/genética , Masculino , Secuenciación del Exoma , Adulto , Mutación , Japón , Cariotipificación
5.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396694

RESUMEN

Universal diagnostic criteria for chronic endometritis (CE) have not been established due to differences in study design among researchers and a lack of typical clinical cases. Lipopolysaccharides (LPSs) have been reported to cause inflammation in the reproductive systems of several animals. This study aimed to elucidate the influence of LPS in the pathogenesis of CE in humans. We investigated whether LPS affected cytokine production and cell proliferation in the endometrium using in vivo and in vitro experiments. LPS concentrations were analyzed between control and CE patients using endometrial tissues. LPS administration stimulated the proliferation of EM-E6/E7 cells derived from human endometrial cells. High LPS concentrations were detected in CE patients. LPS concentration was found to correlate with IL-6 gene expression in the endometrium. Inflammation signaling evoked by LPS led to the onset of CE, since LPS stimulates inflammatory responses and cell cycles in the endometrium. We identified LPS and IL-6 as suitable candidate markers for the diagnosis of CE.


Asunto(s)
Endometritis , Interleucina-6 , Lipopolisacáridos , Animales , Femenino , Humanos , Endometritis/diagnóstico , Endometritis/patología , Endometrio/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/metabolismo
6.
Anat Histol Embryol ; 53(1): e12982, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37811668

RESUMEN

The skeletal muscle plays an important role in maintaining body temperature, which is mediated by thermogenesis and glucose or lipid metabolism. Mangalica is a native Hungarian pig that has cold tolerance and can live in grazing environments throughout the year. We evaluated the morphological and genetic aspects of Mangalica using muscle tissues to elucidate the mechanisms underlying the tolerance to seasonal effects in grazing environments. The muscle tissues in each season were analysed using morphological evaluation and electron microscopy. The cross-sectional area of skeletal muscle cells in summer was significantly larger than that in winter. The thickness of myofibrils in summer was significantly higher than in winter. The thickness of the Z-line in winter was significantly higher than in summer. The expression of MYH4 and GLUT4 was significantly lower in winter than in summer. The result of ATPase staining indicated significantly increase the muscle fibre ratio of type 1 in winter than that in summer. These findings indicate that the muscle fibre in Mangalica shifts from fast-twitch to slow-twitch fibre, and the metabolic physiology of the muscle was adapted to the cold environment. This study demonstrates that Mangalica gained tolerance to both seasonal heat and cold stresses that are caused by significant changes in ambient temperature in a year because of changes in their muscle fibre type and metabolic function. This study may contribute to elucidating the mechanism of thermogenetic adaptation in cold and heat environments among mammals.


Asunto(s)
Frío , Músculo Esquelético , Animales , Porcinos , Estaciones del Año , Mamíferos
7.
Hepatol Res ; 53(11): 1134-1141, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37491771

RESUMEN

AIM: The etiology of non-syndromic biliary atresia (BA) remains largely unknown. In this study, we performed genome-wide screening of genes associated with the risk of non-syndromic BA. METHODS: We analyzed exome data of 15 Japanese patients with non-syndromic BA and 509 control individuals using an optimal sequence kernel association test (SKAT-O), a gene-based association study optimized for small-number subjects. Furthermore, we examined the frequencies of known BA-related single-nucleotide polymorphisms in the BA and control groups. RESULTS: SKAT-O showed that rare damaging variants of MFHAS1, a ubiquitously expressed gene encoding a Toll-like receptor-associated protein, were more common in the BA group than in the control group (Bonferroni corrected p-value = 0.0097). Specifically, p.Val106Gly and p.Arg556Cys significantly accumulated in the patient group. These variants resided within functionally important domains. SKAT-O excluded the presence of other genes significantly associated with the disease risk. Of 60 known BA-associated single-nucleotide polymorphisms, only eight were identified in the BA group. In particular, p.Ile3421Met of MYO15A and p.Ala421Thr of THOC2 were more common in the BA group than in the control group. However, the significance of these two variants is questionable, because MYO15A has been linked to deafness, but not to BA, and the p.Ala421Thr of THOC2 represents a relatively common single-nucleotide polymorphism in Asia. CONCLUSIONS: The results of this study indicate that rare damaging variants in MFHAS1 may constitute a risk factor for non-syndromic BA, whereas the contribution of other monogenic variants to the disease predisposition is limited.

8.
Animals (Basel) ; 13(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048391

RESUMEN

Intrauterine inflammation can cause infertility by disrupting reproductive function. The pathogenesis underlying this process may primarily involve endotoxins from lipopolysaccharides (LPS), which are produced by Gram-negative bacteria. However, the long-term effects of endotoxins in mammalian pregnancy following LPS exposure during fertilization have not been clarified. In this study, we performed experiments to analyze the influence of LPS on early embryonic development and fetal development in mice. Mice uteruses were examined for the expression of genes related to the inflammatory response. The expression of Il-1ß and Il-6 increased following the administration of 200 and 1000 µg/kg LPS. Exposure to LPS using in vitro fertilization (IVF) significantly decreased the embryonic developmental rate. A concentration of 100 µg/kg LPS significantly increased the placental weight and fetal crown -rump length (CRL), whereas a concentration of 200 µg/kg LPS significantly decreased the placenta weight and fetal weight in vivo. These findings indicate that maternal LPS during fertilization affects fetal development until the late stage of pregnancy. Thus, maternal endotoxins may affect epigenetic inheritance during embryonic development from the early to late stages of pregnancy.

9.
Animals (Basel) ; 13(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36830409

RESUMEN

During mammalian gestation, large amounts of progesterone are produced by the placenta and circulate for the maintenance of pregnancy. In contrast, primary plasma estrogens are different between species. To account for this difference, we compared the expression of ovarian and placental steroidogenic genes in various mammalian species (mouse, guinea pig, porcine, ovine, bovine, and human). Consistent with the ability to synthesize progesterone, CYP11A1/Cyp11a1, and bi-functional HSD3B/Hsd3b genes were expressed in all species. CYP17A1/Cyp17a1 was expressed in the placenta of all species, excluding humans. CYP19A/Cyp19a1 was expressed in all placental estrogen-producing species, whereas estradiol-producing HSD17B1 was only strongly expressed in the human placenta. The promoter region of HSD17B1 in various species possesses a well-conserved SP1 site that was activated in human placental cell line JEG-3 cells. However, DNA methylation analyses in the ovine placenta showed that the SP1-site in the promoter region of HSD17B1 was completely methylated. These results indicate that epigenetic regulation of HSD17B1 expression is important for species-specific placental sex steroid production. Because human HSD17B1 showed strong activity for the conversion of androstenedione into testosterone, similar to HSD17B1/Hsd17b1 in other species, we also discuss the biological significance of human placental HSD17B1 based on the symptoms of aromatase-deficient patients.

10.
Theriogenology ; 189: 183-191, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35780557

RESUMEN

In the bovine cumulus oophorus, 11ß-hydroxysteroid dehydrogenase type 1 (HSD11B1)-mediated cortisol production dramatically increases during the periovulatory period. This event is closely associated with increased progesterone (P4) production, implying a functional connection between these C21 steroids. In this study, we investigated the mutual regulation of P4 and cortisol production in the bovine cumulus oophorus. Bovine cumulus-oocyte complexes (COCs) were aspirated from follicles 2-5 mm in diameter and subjected to in vitro maturation (IVM) for 24 h in an M199 supplemented with fetal calf serum (FCS) and follicle-stimulating hormone (FSH). COCs were treated with trilostane (0, 0.1, 1, 10 mM), an inhibitor of P4 synthesis, RU486 (0, 0.1, 1, 10 mM), a receptor antagonist for the progesterone receptor (PR) and glucocorticoid receptor (GR), and various concentrations of a synthetic progestogen nomegestrol acetate (NA; 0, 0.001, 0.01, 0.1, 1, 10 mM) to examine effect of P4. The effects of cortisol (0, 0.1, 1, 10 mM) were also examined in the presence or absence of trilostane. Trilostane and RU486 suppressed cumulus expansion, cortisol production, and HSD11B1 but not hexose-6-phosphate dehydrogenase (H6PDH) expression. Concomitant treatment with NA reversed the effects of trilostane. Unlike NA, cortisol did not alter the antagonistic effects of trilostane on cumulus expansion and HSD11B1 expression. Cortisol did not affect P4 production or steroidogenic acute regulatory protein (STAR), cholesterol side-chain cleavage enzyme (CYP11A1), 3ß-hydroxysteroid dehydrogenase type 1 (HSD3B1), and HSD11B1 expression. Collectively, these results indicate that locally produced P4 is crucial in regulating the local glucocorticoid environment through PRtg in the maturing bovine cumulus oophorus. Cortisol, however, does not appear to regulate P4 or its production.


Asunto(s)
Hidrocortisona , Progesterona , Animales , Bovinos , Células del Cúmulo/metabolismo , Femenino , Hidrocortisona/metabolismo , Hidrocortisona/farmacología , Imidazoles , Mifepristona/farmacología , Oocitos/fisiología , Progesterona/metabolismo , Progesterona/farmacología , Sulfonamidas , Tiofenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA