Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38675703

RESUMEN

While the opioid crisis has justifiably occupied news headlines, emergency rooms are seeing many thousands of visits for another cause: cannabinoid toxicity. This is partly due to the spread of cheap and extremely potent synthetic cannabinoids that can cause serious neurological and cardiovascular complications-and deaths-every year. While an opioid overdose can be reversed by naloxone, there is no analogous treatment for cannabis toxicity. Without an antidote, doctors rely on sedatives, with their own risks, or 'waiting it out' to treat these patients. We have shown that the canonical synthetic 'designer' cannabinoids are highly potent CB1 receptor agonists and, as a result, competitive antagonists may struggle to rapidly reverse an overdose due to synthetic cannabinoids. Negative allosteric modulators (NAMs) have the potential to attenuate the effects of synthetic cannabinoids without having to directly compete for binding. We tested a group of CB1 NAMs for their ability to reverse the effects of the canonical synthetic designer cannabinoid JWH018 in vitro in a neuronal model of endogenous cannabinoid signaling and also in vivo. We tested ABD1085, RTICBM189, and PSNCBAM1 in autaptic hippocampal neurons that endogenously express a retrograde CB1-dependent circuit that inhibits neurotransmission. We found that all of these compounds blocked/reversed JWH018, though some proved more potent than others. We then tested whether these compounds could block the effects of JWH018 in vivo, using a test of nociception in mice. We found that only two of these compounds-RTICBM189 and PSNCBAM1-blocked JWH018 when applied in advance. The in vitro potency of a compound did not predict its in vivo potency. PSNCBAM1 proved to be the more potent of the compounds and also reversed the effects of JWH018 when applied afterward, a condition that more closely mimics an overdose situation. Lastly, we found that PSNCBAM1 did not elicit withdrawal after chronic JWH018 treatment. In summary, CB1 NAMs can, in principle, reverse the effects of the canonical synthetic designer cannabinoid JWH018 both in vitro and in vivo, without inducing withdrawal. These findings suggest a novel pharmacological approach to at last provide a tool to counter cannabinoid toxicity.


Asunto(s)
Cannabinoides , Receptor Cannabinoide CB1 , Animales , Humanos , Ratones , Regulación Alostérica/efectos de los fármacos , Cannabinoides/farmacología , Cannabinoides/química , Indoles/farmacología , Indoles/química , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Antagonistas de Receptores de Cannabinoides/química , Antagonistas de Receptores de Cannabinoides/farmacología
2.
Invest Ophthalmol Vis Sci ; 61(10): 48, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32852544

RESUMEN

Purpose: Aqueous deficiency dry eye (ADDE) is a chronic condition affecting millions, with symptoms ranging from a dry itchiness to blurred vision and accompanied by an increased risk of eye infections. ADDE typically arises from disorders of the lacrimal gland that produces tears necessary for eye lubrication. Cannabis users frequently report dry eye, but the basis for this is unknown. If the effects occur via the endogenous cannabinoid signaling system, then this may represent a novel mechanism for the regulation of tearing. Methods: We examined expression of cannabinoid CB1 receptors in the lacrimal gland using immunohistochemistry, Western blotting, and PCR and tested tetrahydrocannabinol (THC) regulation of tearing in wild-type and CB1-null mice. Results: We now report that CB1 receptors are expressed in the axons of cholinergic neurons innervating the lacrimal gland. Little if any staining is seen in lacrimal gland epithelial cells (acinar and ductal) or myoepithelial cells (MECs). Activation of CB1 receptors by THC or the cannabinoid agonist CP55940 reduces tearing in male mice. In female mice, THC has no effect, but CP55940 increases tearing. In both sexes, the effect of CP55940 is absent in CB1 knockout mice. CB1 mRNA and protein levels are approximately four- to fivefold higher in males than females. In male knockouts, THC increases tearing, suggesting that THC also acts through different receptors. Conclusions: Our results suggest a novel, albeit sex-dependent, physiologic basis for the dry eye symptoms experienced by cannabis users: activation of neuronal CB1 receptors in the lacrimal gland reduces tearing.


Asunto(s)
Dronabinol/metabolismo , Receptor Cannabinoide CB1/metabolismo , Lágrimas/fisiología , Animales , Western Blotting , Ciclohexanoles/farmacología , Dronabinol/antagonistas & inhibidores , Síndromes de Ojo Seco/metabolismo , Femenino , Aparato Lagrimal/metabolismo , Aparato Lagrimal/fisiología , Masculino , Ratones , Ratones Noqueados , Receptor Cannabinoide CB1/antagonistas & inhibidores , Factores Sexuales , Lágrimas/efectos de los fármacos , Lágrimas/metabolismo
3.
Cornea ; 38(7): 905-913, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30969262

RESUMEN

PURPOSE: We previously showed that cannabinoid-related GPR18 receptors are present in the murine corneal epithelium, but their function remains unknown. The related CB1 receptors regulate corneal healing, possibly via chemotaxis. We therefore examined a potential role for GPR18 in corneal epithelial chemotaxis and wound healing. METHODS: We examined GPR18 messenger RNA (mRNA) and protein expression in the cornea. We additionally examined GPR18 action in cultured bovine corneal epithelial cells (bCECs) using Boyden and tracking assays, as well as proliferation and signaling. Finally, we examined wound closure in murine corneal explants. RESULTS: GPR18 mRNA was upregulated with injury in the mouse cornea. GPR18 protein was present in basal epithelial cells of the mouse and cow and redistributed to the wound site upon injury. GPR18 ligand N-arachidonoylglycine induced bCEC chemotaxis. The endocannabinoid arachidonoylethanolamine also induced chemotaxis via fatty acid amide hydrolase-mediated metabolism to N-arachidonoylglycine. GPR18 receptor activation additionally induced bCEC proliferation. In an explant model, the GPR18 antagonist O-1918 slowed corneal epithelial cell migration and the rate of corneal wound closure. CONCLUSIONS: Corneal GPR18 activation induced both chemotaxis and proliferation in corneal epithelial cells in vitro and impacted wound healing. GPR18 may contribute to the maintenance of corneal integrity.


Asunto(s)
Proliferación Celular/fisiología , Quimiotaxis/fisiología , Lesiones de la Cornea/metabolismo , Epitelio Corneal/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Cicatrización de Heridas/fisiología , Animales , Bovinos , Movimiento Celular/fisiología , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Regulación hacia Arriba
4.
Exp Eye Res ; 182: 74-84, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30905716

RESUMEN

CB2R receptors have demonstrated beneficial effects in wound healing in several models. We therefore investigated a potential role of CB2R receptors in corneal wound healing. We examined the functional contribution of CB2R receptors to the course of wound closure in an in vivo murine model. We additionally examined corneal expression of CB2R receptors in mouse and the consequences of their activation on cellular signaling, migration and proliferation in cultured bovine corneal epithelial cells (CECs). Using a novel mouse model, we provide evidence that corneal injury increases CB2R receptor expression in cornea. The CB2R agonist JWH133 induces chemorepulsion in cultured bovine CECs but does not alter CEC proliferation. The signaling profile of CB2R activation is activating MAPK and increasing cAMP accumulation, the latter perhaps due to Gs-coupling. Lipidomic analysis in bovine cornea shows a rise in acylethanolamines including the endocannabinoid anandamide 1 h after injury. In vivo, CB2R deletion and pharmacological block result in a delayed course of wound closure. In summary, we find evidence that CB2R receptor promoter activity is increased by corneal injury and that these receptors are required for the normal course of wound closure, possibly via chemorepulsion.


Asunto(s)
Lesiones de la Cornea/metabolismo , Receptores de Cannabinoides/fisiología , Cicatrización de Heridas/fisiología , Animales , Cannabinoides/farmacología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Quimiotaxis/fisiología , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Epitelio Corneal/metabolismo , Ratones , Receptores de Cannabinoides/metabolismo , Transducción de Señal/fisiología
5.
Neuropharmacology ; 141: 21-31, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30121200

RESUMEN

The cannabinoid receptor CB2 plays a significant role in the regulation of immune function whereas neuronal expression remains a subject of contention. Multiple studies have described CB2 in retina and a recent study showed that CB2 deletion altered retinal visual processing. We revisited CB2 expression using immunohistochemistry and a recently developed CB2-eGFP reporter mouse. We examined the consequence of acute vs. prolonged CB2 deactivation on the electroretinogram (ERG) responses. We also examined lipidomics in CB2 knockout mice and potential changes in microglia using Scholl analysis. Consistent with a published report, in CB2 receptor knockout mice see an increased ERG scotopic a-wave, as well as stronger responses in dark adapted cone-driven ON bipolar cells and, to a lesser extent cone-driven ON bipolar cells early in light adaptation. Significantly, however, acute block with CB2 antagonist, AM630, did not mimic the results observed in the CB2 knockout mice whereas chronic (7 days) block did. Immunohistochemical studies show no CB2 in retina under non-pathological conditions, even with published antibodies. Retinal CB2-eGFP reporter signal is minimal under baseline conditions but upregulated by intraocular injection of either LPS or carrageenan. CB2 knockout mice see modest declines in a broad spectrum of cannabinoid-related lipids. The numbers and morphology of microglia were unaltered. In summary minimal CB2 expression is seen in healthy retina. CB2 appears to be upregulated under pathological conditions. Previously reported functional consequences of CB2 deletion are an adaptive response to prolonged blockade of these receptors. CB2 therefore impacts retinal signaling but perhaps in an indirect, potentially extra-ocular fashion.


Asunto(s)
Receptor Cannabinoide CB2/biosíntesis , Receptor Cannabinoide CB2/fisiología , Retina/fisiología , Adaptación Ocular/fisiología , Animales , Antagonistas de Receptores de Cannabinoides/farmacología , Carragenina , Electrorretinografía , Femenino , Inmunohistoquímica , Indoles/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo , Metabolismo de los Lípidos/genética , Lipopolisacáridos , Masculino , Ratones , Ratones Noqueados , Receptor Cannabinoide CB2/genética , Retina/metabolismo , Células Bipolares de la Retina/fisiología , Regulación hacia Arriba/efectos de los fármacos
6.
J Pharmacol Exp Ther ; 360(2): 300-311, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27927913

RESUMEN

The cannabinoid signaling system includes two G protein-coupled receptors, CB1 and CB2 These receptors are widely distributed throughout the body and have each been implicated in many physiologically important processes. Although the cannabinoid signaling system has therapeutic potential, the development of receptor-selective ligands remains a persistent hurdle. Because CB1 and CB2 are involved in diverse processes, it would be advantageous to develop ligands that differentially engage CB1 and CB2 We now report that GW405833 [1-(2,3-dichlorobenzoyl)-5-methoxy-2-methyl-3-[2-(4-morpholinyl)ethyl]-1H-indole] and AM1710 [1-hydroxy-9-methoxy-3-(2-methyloctan-2-yl)benzo[c]chromen-6-one], described as selective CB2 agonists, can antagonize CB1 receptor signaling. In autaptic hippocampal neurons, GW405833 and AM1710 both interfered with CB1-mediated depolarization-induced suppression of excitation, with GW405833 being more potent. In addition, in CB1-expressing human embryonic kidney 293 cells, GW405833 noncompetitively antagonized adenylyl cyclase activity, extracellular signal-regulated kinase 1/2 phosphorylation, phosphatidylinositol 4,5-bisphosphate signaling, and CB1 internalization by CP55940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan-2-yl)phenol). In contrast, AM1710 behaved as a low-potency competitive antagonist/inverse agonist in these signaling pathways. GW405833 interactions with CB1/arrestin signaling were complex: GW405833 differentially modulated arrestin recruitment in a time-dependent fashion, with an initial modest potentiation at 20 minutes followed by antagonism starting at 1 hour. AM1710 acted as a low-efficacy agonist in arrestin signaling at the CB1 receptor, with no evident time dependence. In summary, we determined that GW405833 and AM1710 are not only CB2 agonists but also CB1 antagonists, with distinctive and complex signaling properties. Thus, experiments using these compounds must take into account their potential activity at CB1 receptors.


Asunto(s)
Cromonas/farmacología , Indoles/farmacología , Morfolinas/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/agonistas , Animales , Arrestina/metabolismo , Colforsina/farmacología , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Células HEK293 , Hipocampo/citología , Humanos , Fosfatos de Inositol/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Fosfoproteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos
7.
Invest Ophthalmol Vis Sci ; 57(14): 6419-6426, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27893106

RESUMEN

Purpose: The diurnal cycling of intraocular pressure (IOP) was first described in humans more than a century ago. This cycling is preserved in other species. The physiologic underpinning of this diurnal variation in IOP remains a mystery, even though elevated pressure is indicated in most forms of glaucoma, a common cause of blindness. Once identified, the system that underlies diurnal variation would represent a natural target for therapeutic intervention. Methods: Using normotensive mice, we measured the regulation of ocular lipid species by the enzymes fatty acid amide hydrolase (FAAH) and N-arachidonoyl phosphatidylethanolamine phospholipase (NAPE-PLD), mRNA expression of these enzymes, and their functional role in diurnal regulation of IOP. Results: We now report that NAPE-PLD and FAAH mice do not exhibit a diurnal cycling of IOP. These enzymes produce and break down acylethanolamines, including the endogenous cannabinoid anandamide. The diurnal lipid profile in mice shows that levels of most N-acyl ethanolamines and, intriguingly, N-arachidonoyl glycine (NAGly), decline at night: NAGly is a metabolite of arachidonoyl ethanolamine and a potent agonist at GPR18 that lowers intraocular pressure. The GPR18 blocker O1918 raises IOP during the day when pressure is low, but not at night. Quantitative PCR analysis shows that FAAH mRNA levels rise with pressure, suggesting that FAAH mediates the changes in pressure. Conclusions: Our results support FAAH-dependent NAGly action at GPR18 as the physiologic basis of the diurnal variation of intraocular pressure in mice.


Asunto(s)
Ritmo Circadiano/fisiología , Regulación de la Expresión Génica , Presión Intraocular/fisiología , ARN/genética , Receptores Acoplados a Proteínas G/genética , Amidohidrolasas/biosíntesis , Amidohidrolasas/genética , Animales , Cromatografía Líquida de Alta Presión , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Fosfolipasa D/biosíntesis , Fosfolipasa D/genética , Reacción en Cadena de la Polimerasa , Receptores Acoplados a Proteínas G/biosíntesis , Espectrometría de Masas en Tándem
8.
Invest Ophthalmol Vis Sci ; 57(7): 3287-96, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27333182

RESUMEN

PURPOSE: Cannabinoids, such as Δ9-THC, act through an endogenous signaling system in the vertebrate eye that reduces IOP via CB1 receptors. Endogenous cannabinoid (eCB) ligand, 2-arachidonoyl glycerol (2-AG), likewise activates CB1 and is metabolized by monoacylglycerol lipase (MAGL). We investigated ocular 2-AG and its regulation by MAGL and the therapeutic potential of harnessing eCBs to lower IOP. METHODS: We tested the effect of topical application of 2-AG and MAGL blockers in normotensive mice and examined changes in eCB-related lipid species in the eyes and spinal cord of MAGL knockout (MAGL-/-) mice using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). We also examined the protein distribution of MAGL in the mouse anterior chamber. RESULTS: 2-Arachidonoyl glycerol reliably lowered IOP in a CB1- and concentration-dependent manner. Monoacylglycerol lipase is expressed prominently in nonpigmented ciliary epithelium. The MAGL blocker KML29, but not JZL184, lowered IOP. The ability of CB1 to lower IOP is not desensitized in MAGL-/- mice. Ocular monoacylglycerols, including 2-AG, are elevated in MAGL-/- mice but, in contrast to the spinal cord, arachidonic acid and prostaglandins are not changed. CONCLUSIONS: Our data confirm a central role for MAGL in metabolism of ocular 2-AG and related lipid species, and that endogenous 2-AG can be harnessed to reduce IOP. The MAGL blocker KML29 has promise as a therapeutic agent, while JZL184 may have difficulty crossing the cornea. These data, combined with the relative specificity of MAGL for ocular monoacylglycerols and the lack of desensitization in MAGL-/- mice, suggest that the development of an optimized MAGL blocker offers therapeutic potential for treatment of elevated IOP.


Asunto(s)
Ácidos Araquidónicos/fisiología , Endocannabinoides/fisiología , Glicéridos/fisiología , Presión Intraocular/fisiología , Monoacilglicerol Lipasas/fisiología , Administración Tópica , Animales , Cámara Anterior/metabolismo , Ácidos Araquidónicos/antagonistas & inhibidores , Ácidos Araquidónicos/metabolismo , Ácidos Araquidónicos/farmacología , Benzodioxoles , Cuerpo Ciliar/metabolismo , Córnea/metabolismo , Endocannabinoides/antagonistas & inhibidores , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Glicéridos/antagonistas & inhibidores , Glicéridos/metabolismo , Glicéridos/farmacología , Inmunohistoquímica , Presión Intraocular/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo , Monoglicéridos/metabolismo , Piperidinas , Conejos , Espectrometría de Masas en Tándem
9.
Pharmacol Res ; 110: 173-180, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27117667

RESUMEN

2-Arachidonoylglycerol (2-AG) is the most abundant endogenous cannabinoid in the brain and an agonist at two cannabinoid receptors (CB1 and CB2). The synthesis, degradation and signaling of 2-AG have been investigated in detail but its relationship to other endogenous monoacylglycerols has not been fully explored. Three congeners that have been isolated from the CNS are 2-linoleoylglycerol (2-LG), 2-oleoylglycerol (2-OG), and 2-palmitoylglycerol (2-PG). These lipids do not orthosterically bind to cannabinoid receptors but are reported to potentiate the activity of 2-AG, possibly through inhibition of 2-AG degradation. This phenomenon has been dubbed the 'entourage effect' and has been proposed to regulate synaptic activity of 2-AG. To clarify the activity of these congeners of 2-AG we tested them in neuronal and cell-based signaling assays. The signaling profile for these compounds is inconsistent with an entourage effect. None of the compounds inhibited neurotransmission via CB1 in autaptic neurons. Interestingly, each failed to potentiate 2-AG-mediated depolarization-induced suppression of excitation (DSE), behaving instead as antagonists. Examining other signaling pathways we found that 2-OG interferes with agonist-induced CB1 internalization while 2-PG modestly internalizes CB1 receptors. However in tests of pERK, cAMP and arrestin recruitment, none of the acylglycerols altered CB1 signaling. Our results suggest 1) that these compounds do not serve as entourage compounds under the conditions examined, and 2) that they may instead serve as functional antagonists. Our results suggest that the relationship between 2-AG and its congeners is more nuanced than previously appreciated.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Endocannabinoides/farmacología , Glicéridos/farmacología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Arrestina/metabolismo , Antagonistas de Receptores de Cannabinoides/metabolismo , Línea Celular , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Endocannabinoides/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glicéridos/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ratones , Neuronas/metabolismo , Fosforilación , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Factores de Tiempo , Transfección
10.
Invest Ophthalmol Vis Sci ; 56(5): 3304-13, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26024113

RESUMEN

PURPOSE: Cannabinoid CB1 receptors are found in abundance in the vertebrate eye, with most tissue types expressing this receptor. However, the function of CB1 receptors in corneal epithelial cells (CECs) is poorly understood. Interestingly, the corneas of CB1 knockout mice heal more slowly after injury via a mechanism proposed to involve protein kinase B (Akt) activation, chemokinesis, and cell proliferation. The current study examined the role of cannabinoids in CEC migration in greater detail. METHODS: We determined the role of CB1 receptors in corneal healing. We examined the consequences of their activation on migration and proliferation in bovine CECs (bCECs). We additionally examined the mRNA profile of cannabinoid-related genes and CB1 protein expression as well as CB1 signaling in bovine CECs. RESULTS: We now report that activation of CB1 with physiologically relevant concentrations of the synthetic agonist WIN55212-2 (WIN) induces bCEC migration via chemotaxis, an effect fully blocked by the CB1 receptor antagonist SR141716. The endogenous agonist 2-arachidonoylglycerol (2-AG) also enhances migration. Separately, mRNA for most cannabinoid-related proteins are present in bovine corneal epithelium and cultured bCECs. Notably absent are CB2 receptors and the 2-AG synthesizing enzyme diglycerol lipase-α (DAGLα). The signaling profile of CB1 activation is complex, with inactivation of mitogen-activated protein kinase (MAPK). Lastly, CB1 activation does not induce bCEC proliferation, but may instead antagonize EGF-induced proliferation. CONCLUSIONS: In summary, we find that CB1-based signaling machinery is present in bovine cornea and that activation of this system induces chemotaxis.


Asunto(s)
Cannabinoides/farmacología , Quimiotaxis/fisiología , Células Epiteliales/fisiología , Epitelio Corneal/citología , Receptor Cannabinoide CB1/fisiología , Análisis de Varianza , Animales , Benzoxazinas/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Cannabinoides/metabolismo , Bovinos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Epitelio Corneal/efectos de los fármacos , Morfolinas/farmacología , Naftalenos/farmacología , ARN Mensajero/análisis , Receptor Cannabinoide CB1/antagonistas & inhibidores , Transducción de Señal/fisiología , Cicatrización de Heridas
11.
Br J Pharmacol ; 165(8): 2575-83, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21615727

RESUMEN

BACKGROUND AND PURPOSE: Numerous studies have shown that N-arachidonoylethanolamine (AEA) can inhibit sperm motility and function but the ability of cannabinoids to inhibit sperm motility is not well understood. We investigated the effects of WIN 55,212-2, a CB(1) cannabinoid receptor agonist, and Δ(9) -tetrahydracannabinol (Δ(9) -THC) on the ATP levels and motility of murine sperm in vitro. In addition, the effects of acute administration of Δ(9) -THC on male fecundity were determined. EXPERIMENTAL APPROACH: Effects of Δ(9) -THC on basal sperm kinematics were determined using computer-assisted sperm analysis (CASA). Stop-motion imaging was performed to measure sperm beat frequency. The effect of Δ(9) -THC on sperm ATP was determined using a luciferase assay. Male fertility was determined by evaluating the size of litters sired by Δ(9) -THC-treated males. KEY RESULTS Pretreatment of sperm for 15 min with 1 µM Δ(9) -THC reduced their basal motility and attenuated the ability of bicarbonate to stimulate flagellar beat frequency. Treatment with 5 µM WIN 55,212-2 or 10 µM Δ(9) -THC for 30 min reduced sperm ATP levels. In sperm lacking CB(1) receptors this inhibitory effect of WIN 55,212-2 on ATP was attenuated whereas that of Δ(9) -THC persisted. Administration of 50 mg·kg(-1) Δ(9) -THC to male mice just before mating caused a 20% decrease in embryonic litter size. CONCLUSIONS AND IMPLICATIONS: Δ(9) -THC inhibits both basal and bicarbonate-stimulated sperm motility in vitro and reduces male fertility in vivo. High concentrations of WIN 55,212-2 or Δ(9) -THC inhibit ATP production in sperm; this effect of WIN 55,212-2 is CB(1) receptor-dependent whereas that of Δ(9) -THC is not. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.


Asunto(s)
Dronabinol/farmacología , Fertilidad/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Adenosina Trifosfato/fisiología , Animales , Células Cultivadas , Masculino , Ratones , Ratones Noqueados , Receptor Cannabinoide CB1/fisiología , Espermatozoides/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA