Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Atheroscler Thromb ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538338

RESUMEN

AIM: This study aimed to analyze two cases of marked hypo-high-density lipoprotein (HDL) cholesterolemia to identify mutations in ATP-binding cassette transporter A1 (ABCA1) and elucidate the molecular mechanism by which these novel pathological mutations contribute to hypo-HDL cholesterolemia in Tangier disease. METHODS: Wild type and mutant expression plasmids containing a FLAG tag inserted at the C-terminus of the human ABCA1 gene were generated and transfected into HEK293T cells. ABCA1 protein expression and cholesterol efflux were evaluated via Western blotting and efflux assay. The difference in the rate of change in protein expression was evaluated when proteolytic and protein-producing systems were inhibited. RESULTS: In case 1, a 20-year-old woman presented with a chief complaint of gait disturbance. Her HDL-C level was only 6.2 mg/dL. Tangier disease was suspected because of muscle weakness, decreased nerve conduction velocity, and splenomegaly. Whole-exome analysis showed compound heterozygosity for a W484* nonsense mutation and S1343I missense mutation, which confirmed Tangier disease. Cholesterol efflux decreased by a mixture of W484* and S1343I mutations. The S1343I mutation decreased the protein production rate but increased the degradation rate, decreasing the protein levels. This patient also had Krabbe disease. The endogenous ABCA1 protein level of macrophage cell decreased by knocking down its internal galactocerebrosidase.Case 2, a 51-year-old woman who underwent tonsillectomy presented with peripheral neuropathy, corneal opacity, and HDL-C of 3.4 mg/dL. Whole-exome analysis revealed compound heterozygosity for R579* and R1572* nonsense mutations, which confirmed Tangier disease. CONCLUSION: Case 1 is a new ABCA1 mutation with complex pathogenicity, namely, a W484*/S1343I compound heterozygote with marked hypo-HDL cholesterolemia. Analyses of the compound heterozygous mutations indicated that decreases in ABCA1 protein levels and cholesterol efflux activity caused by the novel S1343I mutation combined with loss of W484* protein activity could lead to marked hypo-HDL cholesterolemia. Galactocerebrosidase dysfunction could also be a potential confounding factor for ABCA1 protein function.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38396155

RESUMEN

The prevalence of food allergy (FA) has increased worldwide but an effective therapeutic strategy has not been established. Transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive nonselective cation channel, is mainly expressed in the epithelium of various organs. The present study investigated the role of TRPV4 in the pathogenesis of an ovalbumin (OVA)-induced FA model in mice. Wild-type (WT) and TRPV4-deficient (TRPV4KO) mice were sensitized and challenged by OVA to establish FA model. Intestinal tissue samples were processed for biochemical, molecular, and image analyses. Intestinal permeability and antigen uptake assay were conducted using FITC-dextran and OVA-FITC, respectively. TRPV4 was expressed in the colonic epithelium in normal and OVA-treated WT mice. Repeated oral administration of OVA to mice induced systemic allergic symptoms, diarrhea, upregulation of T helper 2 cytokines, OVA-specific immunoglobulin, and FA-related inflammatory cells. These responses were significantly augmented in TRPV4KO mice compared with WT mice. After the induction of FA, the intestinal permeability was significantly increased in TRPV4KO mice compared with WT mice. The expressions of the tight junction protein occludin and adherence junction protein E-cadherin in the colon were significantly lower in TRPV4KO mice compared with WT mice under normal and FA conditions. In addition, the uptake of OVA by CD11c-positive cells was significantly increased in TRPV4KO mice compared with WT mice under FA conditions. These results suggest that epithelial TRPV4 protects against OVA-induced FA symptoms by suppressing the penetration of allergens by maintaining epithelial barrier functions.

3.
FEBS J ; 291(2): 259-271, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37702262

RESUMEN

During periods of fasting, the body undergoes a metabolic shift from carbohydrate utilization to the use of fats and ketones as an energy source, as well as the inhibition of de novo lipogenesis and the initiation of gluconeogenesis in the liver. The transcription factor sterol regulatory element-binding protein-1 (SREBP-1), which plays a critical role in the regulation of lipogenesis, is suppressed during fasting, resulting in the suppression of hepatic lipogenesis. We previously demonstrated that the interaction of fasting-induced Kruppel-like factor 15 (KLF15) with liver X receptor serves as the essential mechanism for the nutritional regulation of SREBP-1 expression. However, the underlying mechanisms of KLF15 induction during fasting remain unclear. In this study, we show that the glucocorticoid receptor (GR) regulates the hepatic expression of KLF15 and, subsequently, lipogenesis through the KLF15-SREBP-1 pathway during fasting. KLF15 is necessary for the suppression of SREBP-1 by GR, as demonstrated through experiments using KLF15 knockout mice. Additionally, we show that GR is involved in the fasting response, with heightened binding to the KLF15 enhancer. It has been widely known that the hypothalamic-pituitary-adrenal (HPA) axis regulates the secretion of glucocorticoids and plays a significant role in the metabolic response to undernutrition. These findings demonstrate the importance of the HPA-axis-regulated GR-KLF15 pathway in the regulation of lipid metabolism in the liver during fasting.


Asunto(s)
Lipogénesis , Receptores de Glucocorticoides , Ratones , Animales , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Lipogénesis/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Regiones Promotoras Genéticas , Hígado/metabolismo , Ayuno
4.
PNAS Nexus ; 2(11): pgad351, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37954160

RESUMEN

The endoplasmic reticulum (ER)-embedded transcription factors, sterol regulatory element-binding proteins (SREBPs), master regulators of lipid biosynthesis, are transported to the Golgi for proteolytic activation to tune cellular cholesterol levels and regulate lipogenesis. However, mechanisms by which the cell responds to the levels of saturated or unsaturated fatty acids remain underexplored. Here, we show that RHBDL4/RHBDD1, a rhomboid family protease, directly cleaves SREBP-1c at the ER. The p97/VCP, AAA-ATPase complex then acts as an auxiliary segregase to extract the remaining ER-embedded fragment of SREBP-1c. Importantly, the enzymatic activity of RHBDL4 is enhanced by saturated fatty acids (SFAs) but inhibited by polyunsaturated fatty acids (PUFAs). Genetic deletion of RHBDL4 in mice fed on a Western diet enriched in SFAs and cholesterol prevented SREBP-1c from inducing genes for lipogenesis, particularly for synthesis and incorporation of PUFAs, and secretion of lipoproteins. The RHBDL4-SREBP-1c pathway reveals a regulatory system for monitoring fatty acid composition and maintaining cellular lipid homeostasis.

5.
Cell Rep ; 42(8): 112914, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37557182

RESUMEN

The adaptive increase in insulin secretion in early stages of obesity serves as a safeguard mechanism to maintain glucose homeostasis that cannot be sustained, and the eventual decompensation of ß cells is a key event in the pathogenesis of diabetes. Here we describe a crucial system orchestrated by a transcriptional cofactor CtBP2. In cultured ß cells, insulin gene expression is coactivated by CtBP2. Global genomic mapping of CtBP2 binding sites identifies a key interaction between CtBP2 and NEUROD1 through which CtBP2 decompacts chromatin in the insulin gene promoter. CtBP2 expression is diminished in pancreatic islets in multiple mouse models of obesity, as well as human obesity. Pancreatic ß cell-specific CtBP2-deficient mice manifest glucose intolerance with impaired insulin secretion. Our transcriptome analysis highlights an essential role of CtBP2 in the maintenance of ß cell integrity. This system provides clues to the molecular basis in obesity and may be targetable to develop therapeutic approaches.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Obesidad , Animales , Humanos , Ratones , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Obesidad/metabolismo
6.
J Biol Chem ; 299(7): 104890, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286039

RESUMEN

Maintenance of metabolic homeostasis is secured by metabolite-sensing systems, which can be overwhelmed by constant macronutrient surplus in obesity. Not only the uptake processes but also the consumption of energy substrates determine the cellular metabolic burden. We herein describe a novel transcriptional system in this context comprised of peroxisome proliferator-activated receptor alpha (PPARα), a master regulator for fatty acid oxidation, and C-terminal binding protein 2 (CtBP2), a metabolite-sensing transcriptional corepressor. CtBP2 interacts with PPARα to repress its activity, and the interaction is enhanced upon binding to malonyl-CoA, a metabolic intermediate increased in tissues in obesity and reported to suppress fatty acid oxidation through inhibition of carnitine palmitoyltransferase 1. In line with our preceding observations that CtBP2 adopts a monomeric configuration upon binding to acyl-CoAs, we determined that mutations in CtBP2 that shift the conformational equilibrium toward monomers increase the interaction between CtBP2 and PPARα. In contrast, metabolic manipulations that reduce malonyl-CoA decreased the formation of the CtBP2-PPARα complex. Consistent with these in vitro findings, we found that the CtBP2-PPARα interaction is accelerated in obese livers while genetic deletion of CtBP2 in the liver causes derepression of PPARα target genes. These findings support our model where CtBP2 exists primarily as a monomer in the metabolic milieu of obesity to repress PPARα, representing a liability in metabolic diseases that can be exploited to develop therapeutic approaches.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas Co-Represoras , Obesidad , PPAR alfa , Humanos , Ácidos Grasos/metabolismo , Hígado/metabolismo , Obesidad/genética , Obesidad/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Proteínas Co-Represoras/metabolismo , Regulación Alostérica
7.
BMC Geriatr ; 23(1): 74, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739383

RESUMEN

BACKGROUND: Mild cognitive impairment (MCI) is not just a prodrome to dementia, but a very important intervention point to prevent dementia caused by Alzheimer's disease (AD). It has long been known that people with AD have a higher frequency of falls with some gait instability. Recent evidence suggests that vestibular impairment is disproportionately prevalent among individuals with MCI and dementia due to AD. Therefore, we hypothesized that the measurement of balance capability is helpful to identify individuals with MCI. METHODS: First, we developed a useful method to evaluate balance capability as well as vestibular function using Nintendo Wii balance board as a stabilometer and foam rubber on it. Then, 49 healthy volunteers aged from 56 to 75 with no clinically apparent cognitive impairment were recruited and the association between their balance capability and cognitive function was examined. Cognitive functions were assessed by MoCA, MMSE, CDR, and TMT-A and -B tests. RESULTS: The new balance capability indicator, termed visual dependency index of postural stability (VPS), was highly associated with cognitive impairment assessed by MoCA, and the area under the receiver operating characteristic (ROC) curve was more than 0.8, demonstrating high sensitivity and specificity (app. 80% and 60%, respectively). CONCLUSIONS: Early evidence suggests that VPS measured using Nintendo Wii balance board as a stabilometer helps identify individuals with MCI at an early and preclinical stage with high sensitivity, establishing a useful method to screen MCI.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/complicaciones , Enfermedad de Alzheimer/diagnóstico , Cognición , Curva ROC , Pruebas Neuropsicológicas , Sensibilidad y Especificidad
8.
Artículo en Inglés | MEDLINE | ID: mdl-36571472

RESUMEN

Summary: In this study, we herein describe a 47-year-old Japanese woman who manifested inheritable non-alcoholic steatohepatitis (NASH) and severe dyslipidemia. Interestingly, her NASH progression was ameliorated by treatment with a sodium-glucose co-transporter 2 (SGLT2) inhibitor. This inheritability prompted us to comprehensively decode her genomic information using whole-exome sequencing. We found the well-established I148M mutation in PNPLA3 as well as mutations in LGALS3 and PEMT for her NASH. Mutations in GCKR may contribute to both NASH and dyslipidemia. We further mined gene mutations potentially responsible for her manifestations that led to the identification of a novel M188fs mutation in MUL1 that may be causally associated with her mitochondrial dysfunction. Our case may provide some clues to better understand this spectrum of disease as well as the rationale for selecting medications. Learning points: While the PNPLA3 I148M mutation is well-established, accumulation of other mutations may accelerate susceptibility to non-alcoholic steatohepatitis (NASH). NASH and dyslipidemia may be intertwined biochemically and genetically through several key genes. SGLT2 inhibitors emerge as promising treatment for NASH albeit with interindividual variation in efficacy. Genetic background may explain the mechanisms behind the variation. A novel dysfunctional mutation in MUL1 may lead to metabolic inflexibilities through impaired mitochondrial dynamics and function.

9.
Artículo en Inglés | MEDLINE | ID: mdl-35979842

RESUMEN

Summary: A paired homeodomain transcription factor, PAX6 (paired-box 6), is essential for the development and differentiation of pancreatic endocrine cells as well as ocular cells. Despite the impairment of insulin secretion observed in PAX6-deficient mice, evidence implicating causal association between PAX6 gene mutations and monogenic forms of human diabetes is limited. We herein describe a 33-year-old Japanese woman with congenital aniridia who was referred to our hospital because of her uncontrolled diabetes with elevated hemoglobin A1c (13.1%) and blood glucose (32.5 mmol/L) levels. Our biochemical analysis revealed that her insulin secretory capacity was modestly impaired as represented by decreased 24-h urinary C-peptide levels (38.0 µg/day), primarily explaining her diabetes. Intriguingly, there was a trend toward a reduction in her serum glucagon levels as well. Based on the well-recognized association of PAX6 gene mutations with congenital aniridia, we screened the whole PAX6 coding sequence, leading to an identification of a heterozygous Gln135* mutation. We tested our idea that this mutation may at least in part explain the impaired insulin secretion observed in this patient. In cultured pancreatic ß-cells, exogenous expression of the PAX6 Gln135* mutant produced a truncated protein that lacked the transcriptional activity to induce insulin gene expression. Our observation together with preceding reports support the recent attempt to include PAX6 in the growing list of genes causally responsible for monogenic diabetes. In addition, since most cases of congenital aniridia carry PAX6 mutations, we may need to pay more attention to blood glucose levels in these patients. Learning points: PAX6 Gln135* mutation may be causally associated not only with congenital aniridia but also with diabetes. Blood glucose levels may deserve more attention in cases of congenital aniridia with PAX6 mutations. Our case supports the recent attempt to include PAX6 in the list of MODY genes, and Gln135* may be pathogenic.

10.
Biochem Biophys Res Commun ; 582: 35-42, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34688045

RESUMEN

High protein diet (HPD) is an affordable and positive approach in prevention and treatment of many diseases. It is believed that transcriptional regulation is responsible for adaptation after HPD feeding and Kruppel-like factor 15 (KLF15), a zinc finger transcription factor that has been proved to perform transcriptional regulation over amino acid, lipid and glucose metabolism, is known to be involved at least in part in this HPD response. To gain more insight into molecular mechanisms by which HPD controls expressions of genes involved in amino acid metabolism in the liver, we performed RNA-seq analysis of mice fed HPD for a short period (3 days). Compared to a low protein diet, HPD feeding significantly increased hepatic expressions of enzymes involved in the breakdown of all the 20 amino acids. Moreover, using KLF15 knockout mice and in vivo Ad-luc analytical system, we were able to identify Cth (cystathionine gamma-lyase) as a new target gene of KLF15 transcription as well as Ast (aspartate aminotransferase) as an example of KLF15-independent gene despite its remarkable responsiveness to HPD. These findings provide us with a clue to elucidate the entire transcriptional regulatory mechanisms of amino acid metabolic pathways.


Asunto(s)
Aspartato Aminotransferasas/genética , Cistationina gamma-Liasa/genética , Dieta Rica en Proteínas/métodos , Factores de Transcripción de Tipo Kruppel/genética , Transcripción Genética , Adaptación Fisiológica/genética , Aminoácidos/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Cistationina gamma-Liasa/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genes Reporteros , Glucosa/metabolismo , Factores de Transcripción de Tipo Kruppel/deficiencia , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Luciferasas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia de ARN , Transducción de Señal
11.
Biochem Biophys Res Commun ; 562: 146-153, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34052660

RESUMEN

While molecular oxygen is essential for aerobic organisms, its utilization is inseparably connected with generation of oxidative insults. To cope with the detrimental aspects, cells evolved antioxidative defense systems, and insufficient management of the oxidative insults underlies the pathogenesis of a wide range of diseases. A battery of genes for this antioxidative defense are regulated by the transcription factors nuclear factor-erythroid 2-like 1 and 2 (NRF1 and NRF2). While the regulatory steps for the activation of NRFs have been investigated with particular emphasis on nuclear translocation and proteosomal degradation, unknown redundancy may exist considering the indispensable nature of these defense systems. Here we unraveled that C-terminal binding protein 2 (CtBP2), a transcriptional cofactor with redox-sensing capability, is an obligate partner of NRFs. CtBP2 forms transcriptional complexes with NRF1 and NRF2 that is required to promote the expression of antioxidant genes in response to oxidative insults. Our findings illustrate a basis for understanding the transcriptional regulation of antioxidative defense systems that may be exploited therapeutically.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas Co-Represoras/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Regulación de la Expresión Génica , Humanos , Factor 1 Relacionado con NF-E2/química , Factor 1 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/química , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Unión Proteica , Transcripción Genética
12.
iScience ; 24(12): 103446, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34988390

RESUMEN

KLF15 is a transcription factor that plays an important role in the activation of gluconeogenesis from amino acids as well as the suppression of lipogenesis from glucose. Here we identified the transcription start site of liver-specific KLF15 transcript and showed that FoxO1/3 transcriptionally regulates Klf15 gene expression by directly binding to the liver-specific Klf15 promoter. To achieve this, we performed a precise in vivo promoter analysis combined with the genome-wide transcription-factor-screening method "TFEL scan", using our original Transcription Factor Expression Library (TFEL), which covers nearly all the transcription factors in the mouse genome. Hepatic Klf15 expression is significantly increased via FoxOs by attenuating insulin signaling. Furthermore, FoxOs elevate the expression levels of amino acid catabolic enzymes and suppress SREBP-1c via KLF15, resulting in accelerated amino acid breakdown and suppressed lipogenesis during fasting. Thus, the FoxO-KLF15 pathway contributes to switching the macronutrient flow in the liver under the control of insulin.

13.
Cell Mol Gastroenterol Hepatol ; 11(4): 949-971, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33246135

RESUMEN

BACKGROUND & AIMS: cAMP responsive element-binding protein 3 like 3 (CREB3L3) is a membrane-bound transcription factor involved in the maintenance of lipid metabolism in the liver and small intestine. CREB3L3 controls hepatic triglyceride and glucose metabolism by activating plasma fibroblast growth factor 21 (FGF21) and lipoprotein lipase. In this study, we intended to clarify its effect on atherosclerosis. METHODS: CREB3L3-deficifient, liver-specific CREB3L3 knockout, intestine-specific CREB3L3 knockout, both liver- and intestine-specific CREB3L3 knockout, and liver CREB3L3 transgenic mice were crossed with LDLR-/- mice. These mice were fed with a Western diet to develop atherosclerosis. RESULTS: CREB3L3 ablation in LDLR-/- mice exacerbated hyperlipidemia with accumulation of remnant APOB-containing lipoprotein. This led to the development of enhanced aortic atheroma formation, the extent of which was additive between liver- and intestine-specific deletion. Conversely, hepatic nuclear CREB3L3 overexpression markedly suppressed atherosclerosis with amelioration of hyperlipidemia. CREB3L3 directly up-regulates anti-atherogenic FGF21 and APOA4. In contrast, it antagonizes hepatic sterol regulatory element-binding protein (SREBP)-mediated lipogenic and cholesterogenic genes and regulates intestinal liver X receptor-regulated genes involved in the transport of cholesterol. CREB3L3 deficiency results in the accumulation of nuclear SREBP proteins. Because both transcriptional factors share the cleavage system for nuclear transactivation, full-length CREB3L3 and SREBPs in the endoplasmic reticulum (ER) functionally inhibit each other. CREB3L3 promotes the formation of the SREBP-insulin induced gene 1 complex to suppress SREBPs for ER-Golgi transport, resulting in ER retention and inhibition of proteolytic activation at the Golgi and vice versa. CONCLUSIONS: CREB3L3 has multi-potent protective effects against atherosclerosis owing to new mechanistic interaction between CREB3L3 and SREBPs under atherogenic conditions.


Asunto(s)
Aterosclerosis/prevención & control , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Regulación de la Expresión Génica , Hiperlipidemias/prevención & control , Metabolismo de los Lípidos , Receptores de LDL/fisiología , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Femenino , Hiperlipidemias/etiología , Hiperlipidemias/metabolismo , Hiperlipidemias/patología , Lipogénesis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética
14.
BMC Med Genet ; 21(1): 91, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375679

RESUMEN

BACKGROUND: Renal hypouricemia (RHUC) is a hereditary disorder where mutations in SLC22A12 gene and SLC2A9 gene cause RHUC type 1 (RHUC1) and RHUC type 2 (RHUC2), respectively. These genes regulate renal tubular reabsorption of urates while there exist other genes counterbalancing the net excretion of urates including ABCG2 and SLC17A1. Urate metabolism is tightly interconnected with glucose metabolism, and SLC2A9 gene may be involved in insulin secretion from pancreatic ß-cells. On the other hand, a myriad of genes are responsible for the impaired insulin secretion independently of urate metabolism. CASE PRESENTATION: We describe a 67 year-old Japanese man who manifested severe hypouricemia (0.7 mg/dl (3.8-7.0 mg/dl), 41.6 µmol/l (226-416 µmol/l)) and diabetes with impaired insulin secretion. His high urinary fractional excretion of urate (65.5%) and low urinary C-peptide excretion (25.7 µg/day) were compatible with the diagnosis of RHUC and impaired insulin secretion, respectively. Considering the fact that metabolic pathways regulating urates and glucose are closely interconnected, we attempted to delineate the genetic basis of the hypouricemia and the insulin secretion defect observed in this patient using whole exome sequencing. Intriguingly, we found homozygous Trp258* mutations in SLC22A12 gene causing RHUC1 while concurrent mutations reported to be associated with hyperuricemia were also discovered including ABCG2 (Gln141Lys) and SLC17A1 (Thr269Ile). SLC2A9, that also facilitates glucose transport, has been implicated to enhance insulin secretion, however, the non-synonymous mutations found in SLC2A9 gene of this patient were not dysfunctional variants. Therefore, we embarked on a search for causal mutations for his impaired insulin secretion, resulting in identification of multiple mutations in HNF1A gene (MODY3) as well as other genes that play roles in pancreatic ß-cells. Among them, the Leu80fs in the homeobox gene NKX6.1 was an unreported mutation. CONCLUSION: We found a case of RHUC1 carrying mutations in SLC22A12 gene accompanied with compensatory mutations associated with hyperuricemia, representing the first report showing coexistence of the mutations with opposed potential to regulate urate concentrations. On the other hand, independent gene mutations may be responsible for his impaired insulin secretion, which contains novel mutations in key genes in the pancreatic ß-cell functions that deserve further scrutiny.


Asunto(s)
Complicaciones de la Diabetes/genética , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Transportadores de Anión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/genética , Defectos Congénitos del Transporte Tubular Renal/genética , Cálculos Urinarios/genética , Anciano , Complicaciones de la Diabetes/complicaciones , Complicaciones de la Diabetes/patología , Glucosa/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Heterocigoto , Proteínas de Homeodominio/genética , Homocigoto , Humanos , Insulina/biosíntesis , Insulina/genética , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Mutación/genética , Defectos Congénitos del Transporte Tubular Renal/complicaciones , Defectos Congénitos del Transporte Tubular Renal/patología , Ácido Úrico/metabolismo , Cálculos Urinarios/complicaciones , Cálculos Urinarios/patología , Secuenciación del Exoma
15.
iScience ; 23(3): 100930, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32151974

RESUMEN

Mice overexpressing the nuclear form of CREBH mainly in the liver (CREBH-Tg) showed suppression of high-fat high-sucrose (HFHS) diet-induced obesity accompanied by an increase in plasma fibroblast growth factor 21 (FGF21) levels. CREBH overexpression induced browning in inguinal white adipose tissue (WAT) and whole-body energy expenditure, which was canceled in Fgf21-/- mice. Deficiency of FGF21 in CREBH-Tg mice mostly canceled the improvement of obesity, but the suppression of inflammation of epidermal WAT, amelioration of insulin resistance, and improvement of glucose metabolism still sustained. Kisspeptin 1 (Kiss1) was identified as a novel hormone target for CREBH to explain these FGF21-independent effects of CREBH. Knockdown of Kiss1 in HFHS-fed CREBH-Tg Fgf21-/- mice showed partially canceled improvement of glucose metabolism. Taken together, we propose that hepatic CREBH pleiotropically improves diet-induced obesity-mediated dysfunctions in peripheral tissues by improving systemic energy metabolism in FGF21-dependent and FGF21-independent mechanisms.

16.
FEBS Lett ; 593(4): 423-432, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30659595

RESUMEN

Glucocorticoids have various medical uses but are accompanied by side effects. The glucocorticoid receptor (GR) has been reported to regulate the clock genes, but the underlying mechanisms are incompletely understood. In this study, we focused on the suppressive effect of the GR on the expression of Rev-erbα (Nr1d1), an important component of the clock regulatory circuits. Here we show that the GR suppresses Rev-erbα expression via the formation of a complex with CLOCK and BMAL1, which binds to the E-boxes in the Nr1d1 promoter. In this GR-CLOCK-BMAL1 complex, the GR does not directly bind to DNA, which is referred to as tethering. These findings provide new insights into the role of the GR in the control of circadian rhythm.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Dexametasona/administración & dosificación , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Receptores de Glucocorticoides/metabolismo , Animales , Ritmo Circadiano/efectos de los fármacos , Dexametasona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Células Hep G2 , Humanos , Masculino , Ratones , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/química , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Regiones Promotoras Genéticas , Receptores de Glucocorticoides/agonistas
17.
Biochem Biophys Res Commun ; 509(2): 462-468, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30595383

RESUMEN

CDC-48 is a AAA (ATPases associated with diverse cellular activities) chaperone and participates in a wide range of cellular activities. Its functional diversity is determined by differential binding of a variety of cofactors. In this study, we analyzed the physiological role of a CDC-48 cofactor UBXN-6 in Caenorhabditis elegans. The amount of UBXN-6 was markedly increased upon starvation, but not with the treatment of tunicamycin and rapamycin. The induction upon starvation is a unique characteristic for UBXN-6 among C-terminal cofactors of CDC-48. During starvation, lysosomal activity is triggered for rapid clearance of cellular materials. We observed the lysosomal activity by monitoring GLO-1::GFP, a marker for lysosome-related organelles. We found that more puncta of GLO-1::GFP were observed in the ubxn-6 deletion mutant after 12 h starvation compared with the wild-type strain. Taken together, we propose that UBXN-6 is involved in clearance of cellular materials upon starvation in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Proteína que Contiene Valosina/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Ingestión de Alimentos , Eliminación de Gen , Hambre , Péptidos y Proteínas de Señalización Intracelular/genética , Lisosomas/genética , Lisosomas/metabolismo , Masculino , Mapas de Interacción de Proteínas
18.
FEBS Lett ; 592(3): 422-433, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29331016

RESUMEN

The SNP rs7903146 at the transcription factor 7-like 2 (TCF7L2) locus is established as the strongest known genetic marker for type 2 diabetes via genome-wide association studies. However, the functional SNPs regulating TCF7L2 expression remain unclear. Here, we show that the SNP rs7074440 is a candidate functional SNP highly linked with rs7903146. A reporter plasmid with rs7074440 normal allele sequence exhibited 15-fold higher luciferase activity compared with risk allele sequence in hepatocytes, demonstrating a strong enhancer activity at rs7074440. Additionally, we identified C-FOS as an activator binding to the rs7074440 enhancer using a TFEL genome-wide screen method. Consistently, knockdown of C-FOS significantly reduced TCF7L2 expression in hepatocytes. Collectively, a novel enhancer regulating TCF7L2 expression was revealed through searching for functional SNPs.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Hepatocitos/metabolismo , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética , Animales , Línea Celular , Femenino , Expresión Génica , Células HEK293 , Células Hep G2 , Hepatocitos/citología , Humanos , Masculino , Ratones
19.
Biochem Biophys Res Commun ; 493(1): 40-45, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28928093

RESUMEN

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have both anti-diabetic and anti-obesity effects. However, the precise mechanism of the anti-obesity effect remains unclear. We previously demonstrated that the glycogen depletion signal triggers lipolysis in adipose tissue via liver-brain-adipose neurocircuitry. In this study, therefore, we investigated whether the anti-obesity mechanism of SGLT2 inhibitor is mediated by this mechanism. Diet-induced obese mice were subjected to hepatic vagotomy (HVx) or sham operation and loaded with high fat diet containing 0.015% tofogliflozin (TOFO), a highly selective SGLT2 inhibitor, for 3 weeks. TOFO-treated mice showed a decrease in fat mass and the effect of TOFO was attenuated in HVx group. Although both HVx and sham mice showed a similar level of reduction in hepatic glycogen by TOFO treatment, HVx mice exhibited an attenuated response in protein phosphorylation by protein kinase A (PKA) in white adipose tissue compared with the sham group. As PKA pathway is known to act as an effector of the liver-brain-adipose axis and activate triglyceride lipases in adipocytes, these results indicated that SGLT2 inhibition triggered glycogen depletion signal and actuated liver-brain-adipose axis, resulting in PKA activation in adipocytes. Taken together, it was concluded that the effect of SGLT2 inhibition on weight loss is in part mediated via the liver-brain-adipose neurocircuitry.


Asunto(s)
Tejido Adiposo/fisiología , Compuestos de Bencidrilo/administración & dosificación , Encéfalo/fisiología , Glucósidos/administración & dosificación , Hígado/fisiología , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Transportador 2 de Sodio-Glucosa/metabolismo , Pérdida de Peso/fisiología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/inervación , Animales , Fármacos Antiobesidad/administración & dosificación , Encéfalo/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/inervación , Masculino , Ratones , Ratones Endogámicos C57BL , Vagotomía , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología , Nervio Vago/cirugía
20.
FEBS Lett ; 591(7): 965-978, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28281280

RESUMEN

Fatty acid synthase (Fasn) is a key component of energy metabolism that is dynamically induced by food intake. Although extensive studies have revealed a number of transcription factors involved in the fasting/refeeding transition of Fasn expression in hepatocytes, much less evidence is available for adipocytes. Using the in vivo Ad-luc analytical system, we identified the inverted CCAAT element (ICE) around -100 nucleotides in the Fasn promoter as a critical cis-element for the refeeding response in adipocytes. Electrophoretic mobility shift assays and chromatin immunoprecipitation show that nuclear factor Y (NF-Y) binds to ICE specifically in refeeding states. Notably, the NF-Y binding to ICE is differently regulated between adipocytes and hepatocytes. These findings provide insights into the specific mechanisms controlling energy metabolism in adipocytes.


Asunto(s)
Adipocitos/metabolismo , Factor de Unión a CCAAT/metabolismo , Ácido Graso Sintasas/metabolismo , Conducta Alimentaria , Células 3T3-L1 , Adenoviridae/genética , Adipocitos/citología , Tejido Adiposo Blanco/metabolismo , Animales , Secuencia de Bases , Factor de Unión a CCAAT/genética , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Ácido Graso Sintasas/genética , Regulación de la Expresión Génica , Immunoblotting , Hígado/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Mutación , Regiones Promotoras Genéticas/genética , Unión Proteica , Elementos de Respuesta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...