Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(5): 334, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744890

RESUMEN

The prevalence of diabetes steadily increases worldwide mirroring the prevalence of obesity. Endoplasmic reticulum (ER) stress is activated in diabetes and contributes to ß-cell dysfunction and apoptosis through the activation of a terminal unfolded protein response (UPR). Our results uncover a new role for Bax Inhibitor-One (BI-1), a negative regulator of inositol-requiring enzyme 1 (IRE1α) in preserving ß-cell health against terminal UPR-induced apoptosis and pyroptosis in the context of supraphysiological loads of insulin production. BI-1-deficient mice experience a decline in endocrine pancreatic function in physiological and pathophysiological conditions, namely obesity induced by high-fat diet (HFD). We observed early-onset diabetes characterized by hyperglycemia, reduced serum insulin levels, ß-cell loss, increased pancreatic lipases and pro-inflammatory cytokines, and the progression of metabolic dysfunction. Pancreatic section analysis revealed that BI-1 deletion overburdens unfolded proinsulin in the ER of ß-cells, confirmed by ultrastructural signs of ER stress with overwhelmed IRE1α endoribonuclease (RNase) activity in freshly isolated islets. ER stress led to ß-cell dysfunction and islet loss, due to an increase in immature proinsulin granules and defects in insulin crystallization with the presence of Rod-like granules. These results correlated with the induction of autophagy, ER phagy, and crinophagy quality control mechanisms, likely to alleviate the atypical accumulation of misfolded proinsulin in the ER. In fine, BI-1 in ß-cells limited IRE1α RNase activity from triggering programmed ß-cell death through apoptosis and pyroptosis (caspase-1, IL-1ß) via NLRP3 inflammasome activation and metabolic dysfunction. Pharmaceutical IRE1α inhibition with STF-083010 reversed ß-cell failure and normalized the metabolic phenotype. These results uncover a new protective role for BI-1 in pancreatic ß-cell physiology as a stress integrator to modulate the UPR triggered by accumulating unfolded proinsulin in the ER, as well as autophagy and programmed cell death, with consequences on ß-cell function and insulin secretion. In pancreatic ß-cells, BI-1-/- deficiency perturbs proteostasis with proinsulin misfolding, ER stress, terminal UPR with overwhelmed IRE1α/XBP1s/CHOP activation, inflammation, ß-cell programmed cell death, and diabetes.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Células Secretoras de Insulina , Proteínas de la Membrana , Proinsulina , Proteostasis , Respuesta de Proteína Desplegada , Animales , Ratones , Dieta Alta en Grasa , Endorribonucleasas/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Proinsulina/metabolismo , Pliegue de Proteína
2.
J Clin Pathol ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940375

RESUMEN

AIMS: Recent clinical trials have shown promising results with drugs targeting the hepatocyte growth factor receptor (c-Met) for advanced non-small cell lung cancers overexpressing c-Met. We assessed reflex testing of c-Met immunohistochemistry (IHC) at diagnosis for NSCLC in the real-world. METHODS: We retrospectively collected clinical, pathological and molecular data of cases diagnosed with NSCLC in our institution from January 2021 to June 2023. We performed c-Met IHC (SP44 clone) and scored the expression using a H-score and a three-tier classification. RESULTS: 391 cases with interpretable c-Met IHC staining were included. The median age at diagnosis was 70 years (range 25-89 years) including 234 males (male/female ratio 1:5). 58% of the samples came from surgical resections, 35% from biopsies and 8% from cytological procedures. 52% of cases were classified as c-Met-positive (H-score≥150) and 19% were classified as c-Methigh (≥50%, 3+). 43% of the c-Metneg presented with lymph node and/or visceral metastases at diagnosis vs 55% for c-Methigh (p=0.042). 23% of the adenocarcinomas showed c-Methigh expression vs 3% for squamous cell carcinomas (p=0.004). 27% of the c-Metneg cases had a high PD-L1 expression vs 58% of c-Methigh cases (p<0.001). MET ex14 skipping was present in 8% of the c-Methigh cases. CONCLUSIONS: Systematic c-Met testing in daily routine for NSCLC patients is feasible, highlighting a potential correlation with clinicopathological and molecular features.

3.
Semin Cell Dev Biol ; 119: 119-129, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34229949

RESUMEN

Macrophages are the dominant immune cell types in the adipose tissue, the liver or the aortic wall and they were originally believed to mainly derived from monocytes to fuel tissue inflammation in cardiometabolic diseases. However, over the last decade the identification of tissue resident macrophages (trMacs) from embryonic origin in these metabolic tissues has provided a breakthrough in the field forcing to better comprehend macrophage diversity during pathological states. Infiltrated monocyte-derived macrophages (moMacs), similar to trMacs, adapt to the local metabolic environment that eventually shapes their functions. In this review, we will summarize the emerging versatility of macrophages in cardiometabolic diseases with a focus in the control of adipose tissue, liver and large vessels homeostasis.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Macrófagos/metabolismo , Animales , Diferenciación Celular , Humanos , Ratones
4.
Nanoscale ; 11(13): 6036-6044, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30869094

RESUMEN

Membrane partition and remodeling play a key role in numerous cell mechanisms, especially in viral replication cycles where viruses subvert the plasma membrane to enter and escape from the host cell. Specifically assembly and release of HIV-1 particles require specific cellular components, which are recruited to the egress site by the viral protein Gag. We previously demonstrated that HIV-1 assembly alters both partitioning and dynamics of the tetraspanins CD9 and CD81, which are key players in many infectious processes, forming enriched areas where the virus buds. In this study we correlated super resolution microscopy mapping of tetraspanins with membrane topography delineated by atomic force microscopy (AFM) in Gag-expressing cells. We revealed that CD9 is specifically trapped within the nascent viral particles, especially at buds tips, suggesting that Gag mediates CD9 and CD81 depletion from the plasma membrane. In addition, we showed that CD9 is organized as small membrane assemblies of few tens of nanometers that can coalesce upon Gag expression.


Asunto(s)
VIH-1/fisiología , Tetraspanina 28/química , Tetraspanina 29/química , Membrana Celular/metabolismo , Citometría de Flujo , Células HeLa , Humanos , Microscopía de Fuerza Atómica , Tetraspanina 28/metabolismo , Tetraspanina 29/metabolismo , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA