Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 921668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968151

RESUMEN

Soil salinity is the major abiotic stress that disrupts nutrient uptake, hinders plant growth, and threatens agricultural production. Plant growth-promoting rhizobacteria (PGPR) are the most promising eco-friendly beneficial microorganisms that can be used to improve plant responses against biotic and abiotic stresses. In this study, a previously identified B. thuringiensis PM25 showed tolerance to salinity stress up to 3 M NaCl. The Halo-tolerant Bacillus thuringiensis PM25 demonstrated distinct salinity tolerance and enhance plant growth-promoting activities under salinity stress. Antibiotic-resistant Iturin C (ItuC) and bio-surfactant-producing (sfp and srfAA) genes that confer biotic and abiotic stresses were also amplified in B. thuringiensis PM25. Under salinity stress, the physiological and molecular processes were followed by the over-expression of stress-related genes (APX and SOD) in B. thuringiensis PM25. The results detected that B. thuringiensis PM25 inoculation substantially improved phenotypic traits, chlorophyll content, radical scavenging capability, and relative water content under salinity stress. Under salinity stress, the inoculation of B. thuringiensis PM25 significantly increased antioxidant enzyme levels in inoculated maize as compared to uninoculated plants. In addition, B. thuringiensis PM25-inoculation dramatically increased soluble sugars, proteins, total phenols, and flavonoids in maize as compared to uninoculated plants. The inoculation of B. thuringiensis PM25 significantly reduced oxidative burst in inoculated maize under salinity stress, compared to uninoculated plants. Furthermore, B. thuringiensis PM25-inoculated plants had higher levels of compatible solutes than uninoculated controls. The current results demonstrated that B. thuringiensis PM25 plays an important role in reducing salinity stress by influencing antioxidant defense systems and abiotic stress-related genes. These findings also suggest that multi-stress tolerant B. thuringiensis PM25 could enhance plant growth by mitigating salt stress, which might be used as an innovative tool for enhancing plant yield and productivity.

2.
Plants (Basel) ; 11(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807572

RESUMEN

Water, a necessary component of cell protoplasm, plays an essential role in supporting life on Earth; nevertheless, extreme changes in climatic conditions limit water availability, causing numerous issues, such as the current water-scarce regimes in many regions of the biome. This review aims to collect data from various published studies in the literature to understand and critically analyze plants' morphological, growth, yield, and physio-biochemical responses to drought stress and their potential to modulate and nullify the damaging effects of drought stress via activating natural physiological and biochemical mechanisms. In addition, the review described current breakthroughs in understanding how plant hormones influence drought stress responses and phytohormonal interaction through signaling under water stress regimes. The information for this review was systematically gathered from different global search engines and the scientific literature databases Science Direct, including Google Scholar, Web of Science, related studies, published books, and articles. Drought stress is a significant obstacle to meeting food demand for the world's constantly growing population. Plants cope with stress regimes through changes to cellular osmotic potential, water potential, and activation of natural defense systems in the form of antioxidant enzymes and accumulation of osmolytes including proteins, proline, glycine betaine, phenolic compounds, and soluble sugars. Phytohormones modulate developmental processes and signaling networks, which aid in acclimating plants to biotic and abiotic challenges and, consequently, their survival. Significant progress has been made for jasmonates, salicylic acid, and ethylene in identifying important components and understanding their roles in plant responses to abiotic stress. Other plant hormones, such as abscisic acid, auxin, gibberellic acid, brassinosteroids, and peptide hormones, have been linked to plant defense signaling pathways in various ways.

3.
Sci Rep ; 12(1): 11997, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835850

RESUMEN

Phosphorus (P) deficiency is the main hurdle in achieving sustainable crop production ps especially in calcareous soils. Using bio-fertilizers like phosphate solubilizing bacteria (PSB) could be a useful approach for sustainable P management as they improve P availability in soil via dissolution, desorption and mineralization reactions. In addition, application of organic amendments with PSB could further ameliorate soil conditions for sustainable management of immobilized nutrients in calcarious soils. Therefore, we performed pot experiment to study the role of PSB in nullifying antagonistic effects of liming (4.78, 10, 15 and 20%) on P availability from poultry manure (PM), farm yard manure (FYM), single super phosphate (SSP) and rock phosphate (RP) in alkaline soils. PSB inoculation improved wheat growth, P availability and stimulated soil acidification over control regardless of P sources and lime levels. Soil calcification adversely affected plant growth, P nutrition, induced soil salinity and alkalinity, however, PSB and manures application potentially nullified such harmful effects over mentioned traits. Individually, organic sources were superior than mineral sources however, the performance of mineral fertilizers with PSB was at par to sole application of manures. Furthermore, application of RP with PSB proved as effective as sole SSP. Therefore, using PSB as bio-fertilizer has huge potential for improving P availability in calcareous soils.


Asunto(s)
Fertilizantes , Suelo , Bacterias , Fertilizantes/análisis , Estiércol , Fosfatos/análisis , Fósforo , Triticum
4.
Antioxidants (Basel) ; 11(6)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35740102

RESUMEN

In the Indian subcontinent, danta (stems) of underutilized amaranth are used as vegetables in different culinary dishes. At the edible stage of the danta, leaves are discarded as waste in the dustbin because they are overaged. For the first time, we assessed the colorant pigments, bioactive components, nutrients, and antiradical potential (AP) of the leaves of danta to valorize the by-product (leaf) for antioxidant, nutritional, and pharmacological uses. Leaves of danta were analyzed for proximate and element compositions, colorant pigments, bioactive constituents, AP (DPPH), and AP (ABTS+). Danta leaves had satisfactory moisture, protein, carbohydrates, and dietary fiber. The chosen danta leaves contained satisfactory magnesium, iron, calcium, potassium, manganese, copper, and zinc; adequate bioactive pigments, such as betacyanins, carotenoids, betalains, ß-carotene, chlorophylls, and betaxanthins; and copious bioactive ascorbic acid, polyphenols, flavonoids, and AP. The correlation coefficient indicated that bioactive phytochemicals and colorant pigments of the selected danta leaves had good AP as assessed via ABTS+ and DPPH assays. The selected danta leaves had good ROS-scavenging potential that could indicate massive possibilities for promoting the health of the nutraceutical- and antioxidant-deficit public. The findings showed that danta leaves are a beautiful by-product for contributing as an alternate origin of antioxidants, nutrients, and bioactive compounds with pharmacological use.

5.
Sci Rep ; 12(1): 10088, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710771

RESUMEN

Reuse of wastewater for vegetable cultivation is becoming popular in order to augment the inadequate irrigation supplies and meet the growing demands of ground water for agriculture and industries production in different regions of the world. This study was investigated to optimize different stages of textile dyeing wastewater (TDW) for irrigation focusing on their effect on growth, yield and physiochemical attributes of tomato, plant nutrient use, heavy metals enrichment and pollution load of the irrigated soil. Textile wastewater were collected from the seven stages of (second wash after scouring and bleaching T2; enzyme treated water T3; second wash after bath drain T4; neutralization treatment T5; second wash after soaping T6; fixing treatment water T7; mixed effluent T8) of a dyeing process for physiochemical characterization and evaluation their irrigation feasibility for tomato cultivation in compare with the ground water (T1). The pot experiment consists of eight irrigation treatments was laid out following a completely randomized block design with three replications. Results showed the presence of plant nutrients and heavy metals in all the studied samples where T8 (mixed effluent) exceeded the limit of agricultural standard for almost all physiological parameters such as TDS, TSS, EC, BOD, COD affording the highest value. T8 also delivered the highest Cl- and heavy metals like Cd, Ni, Cr followed by T4 < T7. As a consequence, these provided comparatively higher enrichment factor (EF), pollution load index (PLI) and sodium absorption ratio (SAR) to transform fresh soil into the category of severe and slightly to moderate saline. Therefore, the yield and physiochemical attributes of tomato were dramatically reduced with T8 and T4 treatment. On the other hand, T2, T3 and T6 treatment had significant positive impact on growth and yield of tomato due to having higher N, P, K, S and lower heavy metals (Cu, Zn, Fe, Pb, Cd, Ni, Cr) than the recommended guideline. These features were contributed to cause minimum EF and PLI in the soil irrigated with T2, T3 and T6 stages of TDW. Correlation matrix demonstrated that EF and PLI of heavy metals (except Cd, Ni) were negatively related to yield, while positively related to SAR and fruit abortion. Although T6 (2nd wash after soaping) performed better in respect to growth, yield, yield attributes and nutrient use efficiency, principal component analysis revealed that T2 (2nd wash after scouring and bleaching) and T3 (enzyme treated water) were also belong to the same group of T6 and T1 (ground water). Thus, it may be suggested that T2, T3 and T6 stages of textile dyeing wastewater could be used profitably without ETP for vegetable cultivation and would effectively supplement not only the nutrient requirement of the crop but may also act as the alternate source of irrigation water. Although, further research is needed to sort out the health risk assessment through the heavy metals' accumulation in the plant parts after irrigation with different stages of textile dyeing wastewater.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Solanum lycopersicum , Riego Agrícola , Cadmio/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Nutrientes/análisis , Suelo/química , Contaminantes del Suelo/análisis , Textiles , Aguas Residuales/análisis , Agua/análisis
6.
Plants (Basel) ; 10(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34451603

RESUMEN

Hemp flour from Dacia Secuieni and Zenit varieties was added to bread in different proportions (5%, 10%, 15% and 20%) to improve its nutritional properties. The purpose of this paper was to present the advanced nutritional characteristics of these bread samples. The selected varieties of hemp, accepted for human consumption, met the requirements for the maximum accepted level of THC in seeds. The protein content of new products increased from 8.76 to 11.48%, lipids increased from 0.59 to 5.41%, mineral content from 1.33 to 1.62%, and fiber content from 1.17 to 5.84%. Elasticity and porosity decreased from 95.51 to 80% and 78.65 to 72.24%, respectively. K, Mg, Ca, P, Mn and Fe are the main mineral substances in bread with addition of hemp flour from the Dacia Secuieni and Zenit varieties. The total amount of unsaturated fatty acids in the bread samples with hemp flour ranged from 67.93 g/100 g and 69.82 g/100 g. Eight amino acids were identified, of which three were essential (lysine, phenylalanine, histidine). Lysine, the deficient amino acid in wheat bread, increased from 0.003 to 0.101 g/100 g. Sucrose and fructose decreased with the addition of hemp flour, and glucose has not been identified. The amount of yeasts and molds decreased in the first 3 days of storage. Regarding the textural profile, the best results were obtained for the samples with 5% addition. In conclusion, bread with the addition of hemp flour has been shown to have superior nutritional properties to wheat bread.

7.
Plants (Basel) ; 10(6)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207108

RESUMEN

The advanced characterization of flour from hemp seeds (edible fruits of Cannabis sativa L.) from the Dacia Secuieni and Zenit varieties, compared to wheat flour, was studied in this research. The aim was to present the characterization of 2 varieties, out of the 70 accepted in Europe, for human consumption. The varieties selected from hemp meet the THC level requirement (0.3 or 0.2% of the dry weight of the reproductive part of the female flowering plant) in seeds. Hemp flour was obtained by grinding. The flour samples were evaluated for physicochemical parameters (moisture, crude protein, lipids, ash, crude fiber), the content of micro and macro elements, fatty acids, amino acids, and carbohydrates. The total proteins in hemp flour are found in larger quantities by over 35% compared to wheat flour, and the lipids reach the threshold of 28%. The amount of mineral substances exceeds 3% in hemp flour, and the fibers exceed 26%, compared to 0.61% for wheat flour. The predominant mineral substances were K, Ca, Mg, p, Fe, and Mn. The predominant fatty acids were the unsaturated ones, predominantly being linoleic acid, followed by oleic and gamma-linoleic acid. In the case of amino acids, the highest amount is found in glutamic acid for hemp flours. As for carbohydrates, sucrose is found in the largest amount, followed by glucose and fructose. In conclusion, hemp flours have superior non-traditional characteristics to wheat flour, being a potential raw material for fortifying food or using them as such, having beneficial effects of consumption on the proper functioning of the human body.

8.
Plants (Basel) ; 10(6)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205806

RESUMEN

Lavandula Stoechas L. is widely known for its pharmacological properties. This study was performed to identify its biomolecules, which are responsible for enhancement of memory. L. stoechas aqueous extract was first purified by liquid column chromatography. The purified fractions were analyzed for in vitro anti-cholinesterase activity. The fraction that produced the best anti-cholinesterase activity was named an active fraction of L. stoechas (AfL.s). This was then subjected to GC-MS for identifications of biomolecules present in it. GC-MS indicated the presence of phenethylamine and α-tocopherol in AfL.s. Different doses of AfL.s were orally administered (for seven days) to scopolamine-induced hyper-amnesic albino mice and then behavioral studies were performed on mice for two days. After that, animals were sacrificed and their brains were isolated to perform the biochemical assay. Results of behavioral studies indicated that AfL.s improved the inflexion ratio in mice, which indicated improvement in retention behavior. Similarly, AfL.s significantly (p < 0.001) reduced acetylcholinesterase and malondialdehyde contents of mice brain, but on the other hand, it improved the level of choline acetyltransferase, catalase, superoxide dismutase, and glutathione. It was found that that high doses of AfL.s (≥400 mg/Kg/p.o.) produced hyper-activity, hyperstimulation, ataxia, seizures, and ultimate death in mice. Its LD50 was calculated as 325 mg/Kg/p.o. The study concludes that α-tocopherol and phenethylamine (a primary amine) present in L. stoechas enhance memory in animal models.

9.
Foods ; 10(2)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513708

RESUMEN

The evolution during ripening on the quality of Apuseni cheese was studied in this research. The cheese samples were controlled and evaluated periodically (at 4 months) during 16 months of storage (at 2-8 °C) for physicochemical parameters (pH, moisture, fat, fat in dry matter, total protein, ash, NaCl), microbiological (total combined yeasts and molds count (TYMC), total viable count (TVC), Escherichia coli, Staphylococcusaureus, Salmonella, lactic acid bacteria (LAB)), fatty acids (FA) and volatile compounds. For better control of the quality of the cheese, the storage space was evaluated for TYMC and TVC. The ripening period showed improved effects on the quality of the cheese, showing lower values for moisture and pH and an increase in macronutrients. Both the cheese samples and the storage space were kept within the allowed microbiological limits. Lipids are predominant, the predominant FAs being saturated fatty acids (SFAs), which decrease, while monounsaturated fatty acids (MUFAs) increase. During ripening, the microbiological and chemical changes result in the development of flavor. Major volatile compounds such as 2-heptanone show accumulations, while acetophenone, limonene, or thymol show a decrease. In conclusion, Apuseni ripening cheese clearly involves a complex series of transformations, leading to a ripening cheese with improved nutritional and aromatic characteristics.

10.
Plants (Basel) ; 11(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35009082

RESUMEN

Himalaiella heteromalla (D.Don) Raab-Straube is a commonly used remedy against various diseases. Crude extract and fractions of H. heteromalla were investigated for a gastrointestinal, bronchodilator, cardiovascular, and anti-inflammatory activities. H. heteromalla crude extract (Hh.Cr) relaxed spontaneous contractions and K+ (80 mM)-induced contraction in jejunum tissue dose-dependently. The relaxation of K+ (80 mM) indicates the presence of Ca++ channel blocking (CCB) effect, which was further confirmed by constructing calcium response curves (CRCs) as they caused rightward parallel shift of CRCs in a manner comparable to verapamil, so the spasmolytic effect of Hh.Cr was due to its CCB activity. Application of Hh.Cr on CCh (1 µM) and K+ (80 mM)-induced contraction in tracheal preparation resulted in complete relaxation, showing its bronchodilator effect mediated through Ca++ channels and cholinergic antagonist activity. Application of Hh.Cr on aortic preparations exhibited vasorelaxant activity through angiotensin and α-adrenergic receptors blockage. It also showed the cardio suppressant effect with negative chronotropic and inotropic response in paired atrium preparation. Similar effects were observed in in vivo models, i.e., decreased propulsive movement, wet feces, and inhibition of edema formation.

11.
Foods ; 8(10)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561605

RESUMEN

Usually, aromatic yeasts are designed to ferment wheat substrates for baking purposes but identification of new substrates for these strains and consequently new formulations for dough could lead to diversified bakery products with improved nutritional qualities and specific sensorial properties. The purpose of our study was to optimize the fermentation of quinoa and amaranth flours with non-conventional yeast strains in order to obtain a preferment with high potential in enhancing nutritional, textural and sensorial features of white wheat bread. Two biotypes of Saccharomyces cerevisiae yeast-a wine yeast strain and a beer yeast strain-commercialized for their aromatic properties were used. Both aromatic yeast strains revealed good performance on fermenting pseudocereal substrates. Utilization of the obtained preferment in white wheat breadmaking led to bread with higher protein, fibres, mineral, total polyphenols content, with specific texture and aroma profile and high consumers' acceptability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...