Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Chembiochem ; 25(5): e202300875, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38251898

RESUMEN

The reversible acetylation of specific Lysine residues of histones plays crucial role in the epigenetic regulation of chromatin activity. Importantly, perturbations of acetylation-deacetylation dynamics have important implications for cancer and neurological disorders. There are 18 human HDACs including sirtuins. The site-selective acetyl eraser specificity of HDACs is poorly defined. Deciphering the site specificity preference of HDACs from a gamut of lysine in histones may be critical for targeted inhibitor development and delineation of regulatory mechanisms associated with chromatin. Here, we have interrogated the propensity of HDACs to erase acetyl mark at Lys-5 of H2B namely, H2BK5Ac engineered by a peptide ligation reaction catalyzed by transpeptidase sortase. HDACs and Sirtuins were individually over-expressed in HEK293 cells and the deacetylation propensity of respective cell lysates was evaluated against H2BK5Ac for initial screening of potential acetyl erasers. This screen indicated HDAC1 as the prime eraser of acetyl mark in H2BK5Ac. The propensity of HDAC1 to erase acetyl mark of H2BK5Ac was further probed using semisynthetic designer nucleosomes with whole cell lysates, recombinant enzyme, and specific inhibitors. Consistent with the above data, siRNA knockdown of HDAC1 and closely related HDAC3 in HEK293 cells prevented the loss of H2BK5 acetylation.


Asunto(s)
Histonas , Sirtuinas , Humanos , Epigénesis Genética , Células HEK293 , Lisina , Cromatina
2.
Metabolites ; 14(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38248866

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.

3.
J Appl Genet ; 64(2): 265-273, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36821070

RESUMEN

There is a vast scope of area expansion of lentils after harvesting wet rice in South Asia. However, due to the photoperiod effect and terminal heat, the existing short-duration varieties failed to minimize yield loss under late-sown conditions. A mis-splicing causing A/G SNP present in the last nucleotide of exon 3 of early flowering 3 (ELF3) gene (elf3 allele) in a lentil line, L4710, is associated with the photoperiod insensitive flowering and the fast absolute growth rate (AGR). None of the Indian cultivars tested in this study, either early or late, possesses the non-functional elf3 allele. However, the A to G transition in ELF3-exon2 replaces glycine with aspartic acid at the 403rd amino acid in all the Indian varieties tested, compared to the reference sequence of Mediterranean accession, ILL5588. Therefore, targeting A/G SNP of exon 3, a PCR-based codominant marker is developed. The elf3 allele is correlated with the fast AGR and early flowering, but low yield and biomass, in an L4710 × LL56-derived RIL-population, compared to ELF3 carrying alleles when sown on 15th November. However, in a month of delayed sowing (20th December), the same elf3-RILs revealed a higher yield and biomass with slower AGR Moreover, three elf3-carrying lines, grown in delayed condition (20 December) for two consecutive years in three locations, outyielded three popular high-yielding cultivars that carry functional ELF3. Thus, elf3-carrying high-yielding lines could be the breeder's choice to expand and enhance lentil yield in short-season environments and in vast rice fallows of south Asia, where delayed rice harvest occurs frequently.


Asunto(s)
Fabaceae , Lens (Planta) , Alelos , Lens (Planta)/genética , Fotoperiodo , Fabaceae/genética , Sur de Asia , Flores/genética
4.
ACS Omega ; 7(50): 46693-46701, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36570257

RESUMEN

Post-translational modifications (PTMs) of proteins increase the functional diversity of the proteome and play crucial regulatory roles in cellular processes. Ubiquitination is a highly regulated and reversible PTM accomplished by a complex multistep process with the sequential action of several specific ubiquitinating (E1-E3) and deubiquitinating enzymes. The different types of ubiquitination (mono-, poly-mono-, and poly-) and the presence of several target sites in a single substrate add to its complexity, which makes the in vitro reconstitution of this ubiquitin (Ub) machinery a quite cumbersome process. Defects in components of the ubiquitination process also contribute to disease pathogenesis, especially cancer and neurodegeneration. This makes them of interest as potential therapeutic targets. Therefore, the development of efficient and reliable methods that will generate a highly homogeneous ubiquitinated peptide and protein conjugate is a topical subject area of research. In this report, we describe the development of a simple and efficient in vitro sortase-mediated chemoenzymatic strategy for semisynthesis of defined and homogeneous ubiquitin conjugates with more than 90% yield. This was achieved by engineering a sortase recognition motif in the dynamic C-terminus of ubiquitin and its conjugation to an isopeptide-linked di-Gly appended peptide LMFK(ε-GG)TEG corresponding to the ubiquitination site residues 383LMFKTEG389 of p53. The defined and homogeneous ubiquitin conjugates were also weighed for their recognition propensity by deubiquitinating enzymes. This facile semisynthesis of ubiquitin conjugates establishes a simple one-step sortase-mediated chemoenzymatic route for the synthesis of homogeneous and defined isopeptide-linked polypeptides and will help in understanding the complexity of the ubiquitination machinery as well as designing isopeptide drugs and therapeutics.

5.
Biochimie ; 200: 140-152, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35654243

RESUMEN

Several strains and species of lactic acid bacteria (LAB) are widely used in fermented foods, including dairy products and also as probiotics, because of their contribution to various health benefits in humans. Sortase enzymes decorate the bacterial cell wall with different surface proteins and pili for facilitating the interactions with host and environment for the colonization and beneficial effects. While the sortases and sortase anchored proteins from pathogens have been the prime focus of the research in the past, sortases from many non-pathogenic bacteria, including LAB strains, have attracted attention for their potential applications in vaccine delivery and other clinical interventions. Here, we report the purification and functional characterization of two sortases (housekeeping SrtA and pilus-specific SrtC) from a probiotic Lactococcus lactis. The purified sortases were found to be active against the putative LPXTG motif-based peptide substrates, albeit with differences. The in-silico analysis provides insights into the residues involved in substrate binding and specificity. Overall, this study sheds new light on the aspects of structure, substrate specificity, and function of sortases from non-pathogenic bacteria, which may have physiological ramifications as well as their applications in sortase-mediated protein bioconjugation.


Asunto(s)
Aminoaciltransferasas , Proteínas Bacterianas , Cisteína Endopeptidasas , Lactococcus lactis , Probióticos , Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Lactococcus lactis/enzimología , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...