Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 58(14): 1221-1236.e7, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37290446

RESUMEN

In developing brains, activity-dependent remodeling facilitates the formation of precise neuronal connectivity. Synaptic competition is known to facilitate synapse elimination; however, it has remained unknown how different synapses compete with one another within a post-synaptic cell. Here, we investigate how a mitral cell in the mouse olfactory bulb prunes all but one primary dendrite during the developmental remodeling process. We find that spontaneous activity generated within the olfactory bulb is essential. We show that strong glutamatergic inputs to one dendrite trigger branch-specific changes in RhoA activity to facilitate the pruning of the remaining dendrites: NMDAR-dependent local signals suppress RhoA to protect it from pruning; however, the subsequent neuronal depolarization induces neuron-wide activation of RhoA to prune non-protected dendrites. NMDAR-RhoA signals are also essential for the synaptic competition in the mouse barrel cortex. Our results demonstrate a general principle whereby activity-dependent lateral inhibition across synapses establishes a discrete receptive field of a neuron.


Asunto(s)
Dendritas , Bulbo Olfatorio , Dendritas/fisiología , Bulbo Olfatorio/fisiología , Sinapsis/fisiología , Neuronas , Diferenciación Celular
2.
Dev Cell ; 56(24): 3309-3320.e5, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34932948

RESUMEN

Maintaining genomic integrity and stability is crucial for life; yet, no tissue-driven mechanism that robustly safeguards the epithelial genome has been discovered. Epidermal stem cells (EpiSCs) continuously replenish the stratified layers of keratinocytes that protect organisms against various environmental stresses. To study the dynamics of DNA-damaged cells in tissues, we devised an in vivo fate tracing system for EpiSCs with DNA double-strand breaks (DSBs) and demonstrated that those cells exit from their niches. The clearance of EpiSCs with DSBs is caused by selective differentiation and delamination through the DNA damage response (DDR)-p53-Notch/p21 axis, with the downregulation of ITGB1. Moreover, concomitant enhancement of symmetric cell divisions of surrounding stem cells indicates that the selective elimination of cells with DSBs is coupled with the augmented clonal expansion of intact stem cells. These data collectively demonstrate that tissue autonomy through the dynamic coupling of cell-autonomous and non-cell-autonomous mechanisms coordinately maintains the genomic quality of the epidermis.


Asunto(s)
Epidermis/metabolismo , Genoma , Células Madre/citología , Animales , Apoptosis/genética , Diferenciación Celular/genética , División Celular/genética , Proliferación Celular/genética , Células Clonales , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN/genética , Humanos , Integrina beta1/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Receptores Notch/metabolismo , Transducción de Señal/genética , Nicho de Células Madre , Células Madre/metabolismo
3.
PLoS Genet ; 12(12): e1006514, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28027303

RESUMEN

Mitral cells (MCs) of the mammalian olfactory bulb have a single primary dendrite extending into a single glomerulus, where they receive odor information from olfactory sensory neurons (OSNs). Molecular mechanisms for controlling dendritic arbors of MCs, which dynamically change during development, are largely unknown. Here we found that MCs displayed more complex dendritic morphologies in mouse mutants of Maml1, a crucial gene in Notch signaling. Similar phenotypes were observed by conditionally misexpressing a dominant negative form of MAML1 (dnMAML1) in MCs after their migration. Conversely, conditional misexpression of a constitutively active form of Notch reduced their dendritic complexity. Furthermore, the intracellular domain of Notch1 (NICD1) was localized to nuclei of MCs. These findings suggest that Notch signaling at embryonic stages is involved in the dendritic complexity of MCs. After the embryonic misexpression of dnMAML1, many MCs aberrantly extended dendrites to more than one glomerulus at postnatal stages, suggesting that Notch signaling is essential for proper formation of olfactory circuits. Moreover, dendrites in cultured MCs were shortened by Jag1-expressing cells. Finally, blocking the activity of Notch ligands in OSNs led to an increase in dendritic complexity as well as a decrease in NICD1 signals in MCs. These results demonstrate that the dendritic complexity of MCs is controlled by their presynaptic partners, OSNs.


Asunto(s)
Proteínas Nucleares/genética , Bulbo Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptor Notch1/genética , Factores de Transcripción/genética , Animales , Células Dendríticas/citología , Células Dendríticas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteína Jagged-1/biosíntesis , Proteína Jagged-1/genética , Ratones , Proteínas Nucleares/biosíntesis , Bulbo Olfatorio/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/citología , Receptor Notch1/biosíntesis , Transducción de Señal/genética , Factores de Transcripción/biosíntesis
4.
eNeuro ; 3(5)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27785463

RESUMEN

The glomerular map in the olfactory bulb (OB) is the basis for odor recognition. Once established during development, the glomerular map is stably maintained throughout the life of an animal despite the continuous turnover of olfactory sensory neurons (OSNs). However, traumatic damage to OSN axons in the adult often leads to dysosmia, a qualitative and quantitative change in olfaction in humans. A mouse model of dysosmia has previously indicated that there is an altered glomerular map in the OB after the OSN axon injury; however, the underlying mechanisms that cause the map distortion remain unknown. In this study, we examined how the glomerular map is disturbed and how the odor information processing in the OB is affected in the dysosmia model mice. We found that the anterior-posterior coarse targeting of OSN axons is disrupted after OSN axon injury, while the local axon sorting mechanisms remained. We also found that the connectivity of mitral/tufted cell dendrites is reduced after injury, leading to attenuated odor responses in mitral/tufted cells. These results suggest that existing OSN axons are an essential scaffold for maintaining the integrity of the olfactory circuit, both OSN axons and mitral/tufted cell dendrites, in the adult.


Asunto(s)
Axones/patología , Dendritas/patología , Trastornos del Olfato/patología , Bulbo Olfatorio/patología , Neuronas Receptoras Olfatorias/patología , Animales , Axones/metabolismo , Dendritas/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos del Olfato/etiología , Trastornos del Olfato/metabolismo , Bulbo Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Olfato/fisiología
5.
Dev Growth Differ ; 57(7): 529-38, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26178919

RESUMEN

We generated knockout (KO) mice of Nepro, which has been shown to be necessary to maintain neural progenitor cells downstream of Notch in the mouse developing neocortex by using knockdown experiments, to explore its function in embryogenesis. Nepro KO embryos were morphologically indistinguishable from wild type (WT) embryos until the morula stage but failed in blastocyst formation, and many cells of the KO embryos resulted in apoptosis. We found that Nepro was localized in the nucleolus at the blastocyst stage. The number of nucleolus precursor bodies (NPBs) and nucleoli per nucleus was significantly higher in Nepro KO embryos compared with WT embryos later than the 2-cell stage. Furthermore, at the morula stage, whereas 18S rRNA and ribosomal protein S6 (rpS6), which are components of the ribosome, were distributed to the cytoplasm in WT embryos, they were mainly localized in the nucleoli in Nepro KO embryos. In addition, in Nepro KO embryos, the amount of the mitochondria-associated p53 protein increased, and Cytochrome c was distributed in the cytoplasm. These findings indicate that Nepro is a nucleolus-associated protein, and its loss leads to the apoptosis before blastocyst formation in mice.


Asunto(s)
Blastocisto/metabolismo , Nucléolo Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Animales , Apoptosis , Nucléolo Celular/química , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/deficiencia , Proteínas Represoras/deficiencia
6.
J Neurosci Methods ; 214(2): 170-6, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23357027

RESUMEN

In vivo electroporation has been widely used to transfect foreign genes into neural progenitors and analyze the function of genes of interest in the developing nervous system. However, it has not been thoroughly examined in the conditional regulation of exogenous genes in postmitotic neurons. Here we show that the combination of in vivo electroporation and the newest version of the tetracycline (Tet)-controlled gene regulatory (Tet-On) system efficiently induced gene expression in various types of neurons in mouse embryonic and postnatal tissues. In pyramidal neurons of the cerebral cortex, tetracycline-responsive element (TRE)-driven gene expression was induced in the presence of doxycycline (Dox). The induction occurred in a dose-dependent manner. The Dox-dependent induction was also observed in cerebellar Purkinje cells and spinal cord neurons. Moreover, the TRE-driven inducible expression of mammalian Barh1 (Mbh1) mimicked the phenotype of the ubiquitous expression of Mbh1 in the spinal cord. These results indicate that the combination of the Tet-On system and in vivo electroporation is useful for analyzing gene function specifically in postmitotic neurons.


Asunto(s)
Encéfalo/metabolismo , Electroporación/métodos , Expresión Génica , Técnicas de Transferencia de Gen , Neuronas/metabolismo , Tetraciclina/administración & dosificación , Animales , Encéfalo/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos
7.
Dev Biol ; 344(2): 1026-34, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20599893

RESUMEN

During development, commissural neurons in the spinal cord project their axons across the ventral midline, floor plate, via multiple interactions among temporally controlled molecular guidance cues and receptors. The transcriptional regulation of commissural axon-associated receptors, however, is not well characterized. Spinal dorsal cells are transfated into commissural neurons by misexpression of Mbh1, a Bar-class homeobox gene. We examined the function of another Bar-class homeobox gene, Mbh2, and how Mbh1 and Mbh2 modulate expression of the receptors, leading to midline crossing of axons. Misexpression of Mbh1 and Mbh2 showed the same effects in the spinal cord. The competence of spinal dorsal cells to become commissural neurons was dependent on the embryonic stage, during which misexpression of the Mbh genes was able to activate guidance receptor genes such as Rig1 and Nrp2. Misexpression of Lhx2, which has been recently shown to be involved in Rig1 expression, activated Rig1 but not Nrp2, and was less effective in generating commissural neurons. Moreover, expression of Lhx2 was activated by and required the Mbh genes. These findings have revealed a transcriptional cascade, in which Lhx2-dependent and -independent pathways leading to expression of guidance receptors branch downstream of the Mbh genes.


Asunto(s)
Neuronas/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Animales , Axones/metabolismo , Axones/fisiología , Embrión de Mamíferos , Genes , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Ratones Endogámicos ICR
8.
Development ; 136(23): 3889-93, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19906856

RESUMEN

In the developing neocortex, neural progenitor cells (NPCs) produce projection neurons of the six cortical layers in a temporal order. Over the course of cortical neurogenesis, maintenance of NPCs is essential for the generation of distinct types of neurons at the required time. Notch signaling plays a pivotal role in the maintenance of NPCs by inhibiting neuronal differentiation. Although Hairy and Enhancer-of-split (Hes)-type proteins are central to Notch signaling, it remains unclear whether other essential effectors take part in the pathway. In this study, we identify Nepro, a gene expressed in the developing mouse neocortex at early stages that encodes a 63 kDa protein that has no known structural motif except a nuclear localization signal. Misexpression of Nepro inhibits neuronal differentiation only in the early neocortex. Furthermore, knockdown of Nepro by siRNA causes precocious differentiation of neurons. Expression of Nepro is activated by the constitutively active form of Notch but not by Hes genes. Nepro represses expression of proneural genes without affecting the expression of Hes genes. Finally, we show that the combination of Nepro and Hes maintains NPCs even when Notch signaling is blocked. These results indicate that Nepro is involved in the maintenance of NPCs in the early neocortex downstream of Notch.


Asunto(s)
Expresión Génica , Genes , Neocórtex/citología , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Electroporación , Embrión de Mamíferos , Etiquetas de Secuencia Expresada , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos ICR , Datos de Secuencia Molecular , Neocórtex/embriología , Proteínas del Tejido Nervioso/genética , Neurogénesis , Neuronas/citología , Neuronas/fisiología , Señales de Localización Nuclear , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Receptores Notch/genética , Proteínas Represoras/genética , Células Madre/citología , Células Madre/fisiología
9.
Development ; 134(19): 3427-36, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17728344

RESUMEN

In the developing central nervous system, cellular diversity depends in part on organising signals that establish regionally restricted progenitor domains, each of which produces distinct types of differentiated neurons. However, the mechanisms of neuronal subtype specification within each progenitor domain remain poorly understood. The p2 progenitor domain in the ventral spinal cord gives rise to two interneuron (IN) subtypes, V2a and V2b, which integrate into local neuronal networks that control motor activity and locomotion. Foxn4, a forkhead transcription factor, is expressed in the common progenitors of V2a and V2b INs and is required directly for V2b but not for V2a development. We show here in experiments conducted using mouse and chick that Foxn4 induces expression of delta-like 4 (Dll4) and Mash1 (Ascl1). Dll4 then signals through Notch1 to subdivide the p2 progenitor pool. Foxn4, Mash1 and activated Notch1 trigger the genetic cascade leading to V2b INs, whereas the complementary set of progenitors, without active Notch1, generates V2a INs. Thus, Foxn4 plays a dual role in V2 IN development: (1) by initiating Notch-Delta signalling, it introduces the asymmetry required for development of V2a and V2b INs from their common progenitors; (2) it simultaneously activates the V2b genetic programme.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas del Ojo/metabolismo , Factores de Transcripción Forkhead/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptor Notch1/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al Calcio , Embrión de Pollo , Cartilla de ADN/genética , Proteínas del Ojo/genética , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Neurológicos , Receptor Notch1/deficiencia , Receptor Notch1/genética , Transducción de Señal , Nervios Espinales/citología , Nervios Espinales/embriología , Nervios Espinales/metabolismo
10.
Nature ; 438(7066): 360-3, 2005 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-16292311

RESUMEN

Astrocytes are the most abundant and functionally diverse glial population in the vertebrate central nervous system (CNS). However, the mechanisms underlying astrocyte specification are poorly understood. It is well established that cellular diversification of neurons in the embryo is generated by position-dependent extrinsic signals and combinatorial interactions of transcription factors that direct specific cell fates by suppressing alternative fates. It is unknown whether a comparable process determines embryonic astrocyte identity. Indeed, astrocyte development is generally thought to take place in a position-independent manner. Here we show multiple functions of Stem cell leukaemia (Scl, also known as Tal1), which encodes a basic helix-loop-helix (bHLH) transcription factor, in the regulation of both astrocyte versus oligodendrocyte cell fate acquisition and V2b versus V2a interneuron cell fate acquisition in the p2 domain of the developing vertebrate spinal cord. Our findings demonstrate a regionally restricted transcriptional programme necessary for astrocyte and V2b interneuron development, with striking parallels to the involvement of SCL in haematopoiesis. They further indicate that acquisition of embryonic glial subtype identity might be regulated by genetic interactions between SCL and the transcription factor Olig2 in the ventral neural tube.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula , Embrión de Pollo , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Interneuronas/citología , Interneuronas/metabolismo , Ratones , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/citología , Oligodendroglía/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Médula Espinal/citología , Células Madre/citología , Células Madre/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda , Factores de Transcripción/genética
11.
Dev Biol ; 282(2): 397-410, 2005 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15950605

RESUMEN

During spinal cord development, oligodendrocytes are generated from a restricted region of the ventral ventricular zone and then spread out into the entire spinal cord. These events are controlled by graded inductive and repressive signals derived from a local organizing center. Sonic hedgehog was identified as an essential ventral factor for oligodendrocyte lineage specification, whereas the dorsal cue was less clear. In this study, Wnt proteins were identified as the dorsal factors that directly inhibit oligodendrocyte development. Wnt signaling through a canonical beta-catenin pathway prevents its differentiation from progenitor to an immature state. Addition of rmFz-8/Fc, a Wnt antagonist, increased the number of immature oligodendrocytes in the spinal cord explant culture, demonstrating that endogenous Wnt signaling controls oligodendrocyte development.


Asunto(s)
Diferenciación Celular/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Oligodendroglía/fisiología , Transducción de Señal/fisiología , Médula Espinal/embriología , Animales , Bromodesoxiuridina , Células COS , Chlorocebus aethiops , Cruzamientos Genéticos , Perfilación de la Expresión Génica , Hibridación in Situ , Ratones , Ratones Noqueados , Plásmidos/genética , Proteínas/genética , Factores de Tiempo , Transfección , Proteínas Wnt , Proteína Wnt3
12.
Artículo en Japonés | MEDLINE | ID: mdl-15484816

RESUMEN

During development of the vertebrate central nervous system (CNS), highly proliferative cells in the ventricular zone of the neural tube serve themselves as progenitors of the various types of neurons, such as interneurons and motor neurons. In the dorsal half of the spinal cord, signals from the roof plate are required for the development of three classes of dorsal interneuron; D1, D2 and D3, listed from dorsal to ventral. This study demonstrates that mouse embryos lacking both Wnt-1 and Wnt-3a are indeed defective in determination of dorsal interneurons. Generation of D1 and D2 classes of dorsal interneurons is impaired; this loss of the dorsal interneurons is compensated by a dorsal expansion of D3 interneuron populations. Most importantly, expression of BMP family proteins, which have been reported to be able to induce dorsal interneurons, is not significantly affected in these mutant embryos. Moreover, the induction of D1 and D2 class interneurons by Wnt-3a protein in the isolated medial region of chick neural plate is demonstrated. Together, these observations clearly indicate that Wnt signaling has a critical role in the generation of D1 and D2 dorsal interneurons.


Asunto(s)
Diferenciación Celular/fisiología , Interneuronas/citología , Proteínas Proto-Oncogénicas/fisiología , Médula Espinal/citología , Animales , Ratones , Ratones Noqueados , Proteínas Wnt , Proteína Wnt1
13.
Biochem Biophys Res Commun ; 313(4): 915-21, 2004 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-14706629

RESUMEN

Wnt signaling is implicated in the control of cell growth and differentiation during CNS development from studies of mouse and chick models, but its action at the cellular level has been poorly understand. In this study, we examine the in vitro function of Wnt signaling in embryonic neural stem cells, dissociated from neurospheres derived from E11.5 mouse telencephalon. Conditioned media containing active Wnt-3a proteins are added to the neural stem cells and its effect on regeneration of neurospheres and differentiation into neuronal and glial cells was examined. Wnt-3a proteins inhibit regeneration of neurospheres, but promote differentiation into MAP2-positive neuronal cells. Wnt-3a proteins also increase the number of GFAP-positive astrocytes but suppress the number of oligodendroglial lineage cells expressing PDGFR or O4. These results indicate that Wnt-3a signaling can inhibit the maintenance of neural stem cells, but rather promote the differentiation of neural stem cells into several cell lineages.


Asunto(s)
Neuronas/citología , Proteínas/fisiología , Células Madre/citología , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados , Ratones , Neuronas/efectos de los fármacos , Proteínas/farmacología , Transducción de Señal , Células Madre/efectos de los fármacos , Proteínas Wnt , Proteína Wnt3 , Proteína Wnt3A
14.
Genes Dev ; 16(5): 548-53, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11877374

RESUMEN

In the developing spinal cord, signals from the roof plate are required for the development of three classes of dorsal interneuron: D1, D2, and D3, listed from dorsal to ventral. Here, we demonstrate that absence of Wnt1 and Wnt3a, normally expressed in the roof plate, leads to diminished development of D1 and D2 neurons and a compensatory increase in D3 neuron populations. This occurs without significantly altered expression of BMP and related genes in the roof plate. Moreover, Wnt3a protein induces expression of D1 and D2 markers in the isolated medial region of the chick neural plate, and Noggin does not interfere with this induction. Thus, Wnt signaling plays a critical role in the specification of cell types for dorsal interneurons.


Asunto(s)
Proteínas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Médula Espinal/embriología , Proteínas de Pez Cebra , Animales , Inducción Embrionaria , Interneuronas , Ratones , Ratones Mutantes , Proteínas/genética , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Médula Espinal/citología , Células Madre , Proteínas Wnt , Proteína Wnt1 , Proteína Wnt3 , Proteína Wnt3A
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA