Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lancet Microbe ; 5(3): e216-e225, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38278167

RESUMEN

BACKGROUND: Accurate quantitation of immune markers is crucial for ensuring reliable assessment of vaccine efficacy against infectious diseases. This study was designed to confirm standardised performance of SARS-CoV-2 assays used to evaluate COVID-19 vaccine candidates at the initial seven laboratories (in North America, Europe, and Asia) of the Coalition for Epidemic Preparedness Innovations (CEPI) Centralized Laboratory Network (CLN). METHODS: Three ELISAs (pre-spike protein, receptor binding domain, and nucleocapsid), a microneutralisation assay (MNA), a pseudotyped virus-based neutralisation assay (PNA), and an IFN-γ T-cell ELISpot assay were developed, validated or qualified, and transferred to participating laboratories. Immune responses were measured in ELISA laboratory units (ELU) for ELISA, 50% neuralisation dilution (ND50) for MNA, 50% neutralisation titre (NT50) for PNA, and spot-forming units for the ELISpot assay. Replicate assay results of well characterised panels and controls of blood samples from individuals with or without SARS-CoV-2 infection were evaluated by geometric mean ratios, standard deviation, linear regression, and Spearman correlation analysis for consistency, accuracy, and linearity of quantitative measurements across all laboratories. FINDINGS: High reproducibility of results across all laboratories was demonstrated, with interlaboratory precision of 4·1-7·7% coefficient of variation for all three ELISAs, 3·8-19·5% for PNA, and 17·1-24·1% for MNA, over a linear range of 11-30 760 ELU per mL for the three ELISAs, 14-7876 NT50 per mL for PNA, and 21-25 587 ND50 per mL for MNA. The MNA was also adapted for detection of neutralising antibodies against the major SARS-CoV-2 variants of concern. The results of PNA and MNA (r=0·864) and of ELISA and PNA (r=0·928) were highly correlated. The IFN-γ ELISpot interlaboratory variability was 15·9-49·9% coefficient of variation. Sensitivity and specificity were close to 100% for all assays. INTERPRETATION: The CEPI CLN provides accurate quantitation of anti-SARS-CoV-2 immune response across laboratories to allow direct comparisons of different vaccine formulations in different geographical areas. Lessons learned from this programme will serve as a model for faster responses to future pandemic threats and roll-out of effective vaccines. FUNDING: CEPI.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Vacunas contra la COVID-19 , Laboratorios , Reproducibilidad de los Resultados , Anticuerpos Antivirales , Inmunidad
2.
Front Immunol ; 13: 884113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677037

RESUMEN

Conventional treatment of chronic hepatitis B (CHB) is rarely curative due to the immunotolerant status of patients. RG7854 is an oral double prodrug of a toll-like receptor 7 (TLR7) agonist that is developed for the treatment of CHB. The therapeutic efficacy, host immune response, and safety of RG7854 were evaluated in the woodchuck model of CHB. Monotreatment with the two highest RG7854 doses and combination treatment with the highest RG7854 dose and entecavir (ETV) suppressed viral replication, led to loss of viral antigens, and induced seroconversion in responder woodchucks. Since viral suppression and high-titer antibodies persisted after treatment ended, this suggested that a sustained antiviral response (SVR) was induced by RG7854 in a subset of animals. The SVR rate, however, was comparable between both treatment regimens, suggesting that the addition of ETV did not enhance the therapeutic efficacy of RG7854 although it augmented the proliferation of blood cells in response to viral antigens and magnitude of antibody titers. The induction of interferon-stimulated genes in blood by RG7854/ETV combination treatment demonstrated on-target activation of TLR7. Together with the virus-specific blood cell proliferation and the transient elevations in liver enzymes and inflammation, this suggested that cytokine-mediated non-cytolytic and T-cell mediated cytolytic mechanisms contributed to the SVR, in addition to the virus-neutralizing effects by antibody-producing plasma cells. Both RG7854 regimens were not associated with treatment-limiting adverse effects but accompanied by dose-dependent, transient neutropenia and thrombocytopenia. The study concluded that finite, oral RG7854 treatment can induce a SVR in woodchucks that is based on the retrieval of antiviral innate and adaptive immune responses. This supports future investigation of the TLR7 agonist as an immunotherapeutic approach for achieving functional cure in patients with CHB.


Asunto(s)
Antivirales , Hepatitis B Crónica , Marmota , Seroconversión , Receptor Toll-Like 7 , Animales , Antígenos Virales , Antivirales/uso terapéutico , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/veterinaria , Receptor Toll-Like 7/agonistas
3.
NPJ Vaccines ; 7(1): 19, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149714

RESUMEN

Novel oral poliovirus vaccine type 2 (nOPV2) is being developed to reduce the rare occurrence of disease and outbreaks associated with the genetic instability of the Sabin vaccine strains. Children aged 1 to 5 years were enrolled in two related clinical studies to assess safety, immunogenicity, shedding rates and properties of the shed virus following vaccination with nOPV2 (two candidates) versus traditional Sabin OPV type 2 (mOPV2). The anticipated pattern of reversion and increased virulence was observed for shed Sabin-2 virus, as assessed using a mouse model of poliovirus neurovirulence. In contrast, there were significantly reduced odds of mouse paralysis for shed virus for both nOPV2 candidates when compared to shed Sabin-2 virus. Next-generation sequencing of shed viral genomes was consistent with and further supportive of the observed neurovirulence associated with shed Sabin-2 virus, as well as the reduced reversion to virulence of shed candidate viruses. While shed Sabin-2 showed anticipated A481G reversion in the primary attenuation site in domain V in the 5' untranslated region to be associated with increased mouse paralysis, the stabilized domain V in the candidate viruses did not show polymorphisms consistent with reversion to neurovirulence. The available data from a key target age group for outbreak response confirm the superior genetic and phenotypic stability of shed nOPV2 strains compared to shed Sabin-2 and suggest that nOPV2 should be associated with less paralytic disease and potentially a lower risk of seeding new outbreaks.

4.
Front Immunol ; 12: 745802, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671360

RESUMEN

Immune modulation for the treatment of chronic hepatitis B (CHB) has gained more traction in recent years, with an increasing number of compounds designed for targeting different host pattern recognition receptors (PRRs). These agonistic molecules activate the receptor signaling pathway and trigger an innate immune response that will eventually shape the adaptive immunity for control of chronic infection with hepatitis B virus (HBV). While definitive recognition of HBV nucleic acids by PRRs during viral infection still needs to be elucidated, several viral RNA sensing receptors, including toll-like receptors 7/8/9 and retinoic acid inducible gene-I-like receptors, are explored preclinically and clinically as possible anti-HBV targets. The antiviral potential of viral DNA sensing receptors is less investigated. In the present study, treatment of primary woodchuck hepatocytes generated from animals with CHB with HSV-60 or poly(dA:dT) agonists resulted in increased expression of interferon-gamma inducible protein 16 (IFI16) or Z-DNA-binding protein 1 (ZBP1/DAI) and absent in melanoma 2 (AIM2) receptors and their respective adaptor molecules and effector cytokines. Cytosolic DNA sensing receptor pathway activation correlated with a decline in woodchuck hepatitis virus (WHV) replication and secretion in these cells. Combination treatment with HSV-60 and poly(dA:dT) achieved a superior antiviral effect over monotreatment with either agonist that was associated with an increased expression of effector cytokines. The antiviral effect, however, could not be enhanced further by providing additional type-I interferons (IFNs) exogenously, indicating a saturated level of effector cytokines produced by these receptors following agonism. In WHV-uninfected woodchucks, a single poly(dA:dT) dose administered via liver-targeted delivery was well-tolerated and induced the intrahepatic expression of ZBP1/DAI and AIM2 receptors and their effector cytokines, IFN-ß and interleukins 1ß and 18. Receptor agonism also resulted in increased IFN-γ secretion of peripheral blood cells. Altogether, the effect on WHV replication and secretion following in vitro activation of IFI16, ZBP1/DAI, and AIM2 receptor pathways suggested an antiviral benefit of targeting more than one cytosolic DNA receptor. In addition, the in vivo activation of ZBP1/DAI and AIM2 receptor pathways in liver indicated the feasibility of the agonist delivery approach for future evaluation of therapeutic efficacy against HBV in woodchucks with CHB.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis B de la Marmota/efectos de los fármacos , Hepatitis B/tratamiento farmacológico , Hepatocitos/efectos de los fármacos , Poli dA-dT/farmacología , Receptores de Superficie Celular/agonistas , Receptores de Reconocimiento de Patrones/agonistas , Receptores Virales/agonistas , Animales , Antivirales/uso terapéutico , Células Cultivadas , Citocinas/biosíntesis , Citocinas/genética , Citosol/virología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Hepatitis B/inmunología , Hepatitis B/virología , Virus de la Hepatitis B de la Marmota/fisiología , Hepatocitos/virología , Inmunidad Innata , Interferones/farmacología , Hígado/efectos de los fármacos , Hígado/virología , Marmota , Infección Persistente , Poli dA-dT/uso terapéutico , Pteridinas/farmacología , Receptores de Superficie Celular/biosíntesis , Receptores de Superficie Celular/genética , Receptores de Reconocimiento de Patrones/biosíntesis , Receptores de Reconocimiento de Patrones/genética , Receptores Virales/biosíntesis , Receptores Virales/genética , Replicación Viral/efectos de los fármacos
5.
Front Immunol ; 12: 713420, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367179

RESUMEN

The antiviral property of small agonist compounds activating pattern recognition receptors (PRRs), including toll-like and RIG-I receptors, have been preclinically evaluated and are currently tested in clinical trials against chronic hepatitis B (CHB). The involvement of other PRRs in modulating hepatitis B virus infection is less known. Thus, woodchucks with resolving acute hepatitis B (AHB) after infection with woodchuck hepatitis virus (WHV) were characterized as animals with normal or delayed resolution based on their kinetics of viremia and antigenemia, and the presence and expression of various PRRs were determined in both outcomes. While PRR expression was unchanged immediately after infection, most receptors were strongly upregulated during resolution in liver but not in blood. Besides well-known PRRs, including TLR7/8/9 and RIG-I, other less-characterized receptors, such as IFI16, ZBP1/DAI, AIM2, and NLRP3, displayed comparable or even higher expression. Compared to normal resolution, a 3-4-week lag in peak receptor expression and WHV-specific B- and T-cell responses were noted during delayed resolution. This suggested that PRR upregulation in woodchuck liver occurs when the mounting WHV replication reaches a certain level, and that multiple receptors are involved in the subsequent induction of antiviral immune responses. Liver enzyme elevations occurred early during normal resolution, indicating a faster induction of cytolytic mechanisms than in delayed resolution, and correlated with an increased expression of NK-cell and CD8 markers and cytolytic effector molecules. The peak liver enzyme level, however, was lower during delayed resolution, but hepatic inflammation was more pronounced and associated with a higher expression of cytolytic markers. Further comparison of PRR expression revealed that most receptors were significantly reduced in woodchucks with established and progressing CHB, and several RNA sensors more so than DNA sensors. This correlated with a lower expression of receptor adaptor and effector molecules, suggesting that persistent, high-level WHV replication interferes with PRR activation and is associated with a diminished antiviral immunity based on the reduced expression of immune cell markers, and absent WHV-specific B- and T-cell responses. Overall, the differential expression of PRRs during resolution and persistence of WHV infection emphasizes their importance in the ultimate viral control during AHB that is impaired during CHB.


Asunto(s)
Virus de la Hepatitis B de la Marmota/inmunología , Hepatitis B/veterinaria , Inmunidad Innata , Receptores Inmunológicos/metabolismo , Animales , Biomarcadores , Progresión de la Enfermedad , Expresión Génica , Hepatitis B Crónica/veterinaria , Inflamasomas/metabolismo , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Hígado/virología , Marmota , Factores de Transcripción/metabolismo , Carga Viral
6.
Hepatol Commun ; 4(6): 916-931, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32490326

RESUMEN

RG7834 is a small-molecule inhibitor of hepatitis B virus (HBV) gene expression that significantly reduces the levels of hepatitis B surface antigen (HBsAg) and HBV DNA in a humanized liver HBV mouse model. In the current study, we evaluated the potency of RG7834 in the woodchuck model of chronic HBV infection, alone and in combination with entecavir (ETV) and/or woodchuck interferon-α (wIFN-α). RG7834 reduced woodchuck hepatitis virus (WHV) surface antigen (WHsAg) by a mean of 2.57 log10 from baseline and WHV DNA by a mean of 1.71 log10. ETV + wIFN-α reduced WHsAg and WHV DNA by means of 2.40 log10 and 6.70 log10, respectively. The combination of RG7834, ETV, and wIFN-α profoundly reduced WHsAg and WHV DNA levels by 5.00 log10 and 7.46 log10, respectively. However, both viral parameters rebounded to baseline after treatment was stopped and no antibody response against WHsAg was observed. Effects on viral RNAs were mainly seen with the triple combination treatment, reducing both pregenomic RNA (pgRNA) and WHsAg RNA, whereas RG7834 mainly reduced WHsAg RNA and ETV mainly affected pgRNA. When WHsAg was reduced by the triple combination, peripheral blood mononuclear cells (PBMCs) proliferated significantly in response to viral antigens, but the cellular response was diminished after WHsAg returned to baseline levels during the off-treatment period. Consistent with this, Pearson correlation revealed a strong negative correlation between WHsAg levels and PBMC proliferation in response to peptides covering the entire WHsAg and WHV nucleocapsid antigen. Conclusion: A fast and robust reduction of WHsAg by combination therapy reduced WHV-specific immune dysfunction in the periphery. However, the magnitude and/or duration of the induced cellular response were not sufficient to achieve a sustained antiviral response.

7.
PLoS Pathog ; 15(12): e1008248, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31869393

RESUMEN

Viral and/or host factors that are directly responsible for the acute versus chronic outcome of hepatitis B virus (HBV) infection have not been identified yet. Information on immune response during the early stages of HBV infection in humans is mainly derived from blood samples of patients with acute hepatitis B (AHB), which are usually obtained after the onset of clinical symptoms. Features of intrahepatic immune response in these patients are less studied due to the difficulty of obtaining multiple liver biopsies. Woodchuck hepatitis virus (WHV) infection in woodchucks is a model for HBV infection in humans. In the present study, five adult woodchucks were experimentally infected with WHV and then followed for 18 weeks. Blood and liver tissues were frequently collected for assaying markers of WHV replication and innate and adaptive immune responses. Liver tissues were further analyzed for pathological changes and stained for important immune cell subsets and cytokines. The increase and subsequent decline of viral replication markers in serum and liver, the elicitation of antibodies against viral proteins, and the induction of virus-specific T-cell responses indicated eventual resolution of acute WHV infection in all animals. Intrahepatic innate immune makers stayed unchanged immediately after the infection, but increased markedly during resolution, as determined by changes in transcript levels. The presence of interferon-gamma and expression of natural killer (NK) cell markers suggested that a non-cytolytic response mechanism is involved in the initial viral control in liver. This was followed by the expression of T-cell markers and cytolytic effector molecules, indicating the induction of a cytolytic response mechanism. Parallel increases in regulatory T-cell markers suggested that this cell subset participates in the overall immune cell infiltration in liver and/or has a role in regulating AHB induced by the cytolytic response mechanism. Since the transcript levels of immune cell markers in blood, when detectable, were lower than in liver, and the kinetics, except for NK-cells and interferon-gamma, did not correlate well with their intrahepatic expression, this further indicated enrichment of immune cells within liver. Conclusion: The coordinated interplay of innate and adaptive immunity mediates viral clearance in the woodchuck animal model of HBV infection. The initial presence of NK-cell associated interferon-gamma response points to an important role of this cytokine in HBV resolution.


Asunto(s)
Inmunidad Adaptativa , Virus de la Hepatitis B de la Marmota/patogenicidad , Hepatitis B/virología , Inmunidad Innata , Células Asesinas Naturales/virología , Marmota/virología , Envejecimiento , Animales , Virus de la Hepatitis B de la Marmota/inmunología , Interferón gamma/metabolismo , Células Asesinas Naturales/metabolismo , Hígado/patología , Hígado/virología , Linfocitos T/inmunología , Linfocitos T/virología , Replicación Viral/inmunología
8.
Methods Mol Biol ; 1540: 277-294, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27975326

RESUMEN

An estimated 350 million people are chronically infected with hepatitis B virus (HBV), and over one million people die each year due to HBV-associated liver diseases, such as cirrhosis and liver cancer. Current therapeutics for chronic HBV infection are limited to nucleos(t)ide analogs and interferon. These anti-HBV drugs in general reduce viral load and improve the long-term outcome of infection but very rarely lead to a cure. Thus, new therapies for chronic HBV infection need to be developed by utilizing liver cell lines and primary cultures and small laboratory animals capable of replicating HBV or surrogate hepadnaviruses for antiviral testing. Natural infection with woodchuck hepatitis virus (WHV), a hepadnavirus closely related to HBV, occurs in woodchucks. Chronic WHV infection has been established over decades as a suitable model for evaluating direct-acting antivirals as well as vaccines, vaccine adjuvants, and immunotherapeutics because animals are fully immunocompetent. Before HBV-specific compounds are applied to woodchucks, they are usually tested in primary woodchuck hepatocytes (PWHs) replicating WHV at high levels for confirming drug specificity against viral or host targets. Here we describe a protocol for the isolation of PWHs from liver of WHV-infected woodchucks, maintenance in culture, and use in assays for determining antiviral efficacy, safety, and associated host innate immune response of new experimental drugs. Exemplary assays were performed with the nucleoside analog, lamivudine, and the immunomodulator, interferon-alpha.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis B de la Marmota/inmunología , Hepatitis Viral Animal/inmunología , Hepatitis Viral Animal/virología , Hepatocitos/efectos de los fármacos , Hepatocitos/inmunología , Inmunidad Innata , Animales , Separación Celular , Supervivencia Celular , Regulación de la Expresión Génica/efectos de los fármacos , Hepatitis Viral Animal/tratamiento farmacológico , Hepatocitos/virología , Inmunidad Innata/genética , Factores Inmunológicos/farmacología , Interferón-alfa/farmacología , ARN Viral , Replicación Viral
10.
PLoS Pathog ; 11(9): e1005103, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26352406

RESUMEN

Recombinant interferon-alpha (IFN-α) is an approved therapy for chronic hepatitis B (CHB), but the molecular basis of treatment response remains to be determined. The woodchuck model of chronic hepatitis B virus (HBV) infection displays many characteristics of human disease and has been extensively used to evaluate antiviral therapeutics. In this study, woodchucks with chronic woodchuck hepatitis virus (WHV) infection were treated with recombinant woodchuck IFN-α (wIFN-α) or placebo (n = 12/group) for 15 weeks. Treatment with wIFN-α strongly reduced viral markers in the serum and liver in a subset of animals, with viral rebound typically being observed following cessation of treatment. To define the intrahepatic cellular and molecular characteristics of the antiviral response to wIFN-α, we characterized the transcriptional profiles of liver biopsies taken from animals (n = 8-12/group) at various times during the study. Unexpectedly, this revealed that the antiviral response to treatment did not correlate with intrahepatic induction of the majority of IFN-stimulated genes (ISGs) by wIFN-α. Instead, treatment response was associated with the induction of an NK/T cell signature in the liver, as well as an intrahepatic IFN-γ transcriptional response and elevation of liver injury biomarkers. Collectively, these data suggest that NK/T cell cytolytic and non-cytolytic mechanisms mediate the antiviral response to wIFN-α treatment. In summary, by studying recombinant IFN-α in a fully immunocompetent animal model of CHB, we determined that the immunomodulatory effects, but not the direct antiviral activity, of this pleiotropic cytokine are most closely correlated with treatment response. This has important implications for the rational design of new therapeutics for the treatment of CHB.


Asunto(s)
Virus de la Hepatitis B de la Marmota/inmunología , Hepatitis B Crónica/veterinaria , Inmunidad Celular/efectos de los fármacos , Factores Inmunológicos/uso terapéutico , Interferón-alfa/uso terapéutico , Hígado/metabolismo , Transcripción Genética , Animales , Antivirales/administración & dosificación , Antivirales/efectos adversos , Antivirales/metabolismo , Antivirales/uso terapéutico , Biomarcadores/sangre , Biomarcadores/metabolismo , Biopsia , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Virus de la Hepatitis B de la Marmota/efectos de los fármacos , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/metabolismo , Hepatitis B Crónica/virología , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/genética , Factores Inmunológicos/metabolismo , Interferón-alfa/administración & dosificación , Interferón-alfa/genética , Interferón-alfa/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Hígado/inmunología , Hígado/patología , Hígado/virología , Masculino , Marmota , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/patología , Carga Viral/efectos de los fármacos
11.
PLoS Negl Trop Dis ; 7(5): e2239, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23738025

RESUMEN

BACKGROUND: The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi) pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. METHODOLOGY/PRINCIPAL FINDINGS: We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2) or Argonaute-2 (AGO-2). We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA) trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses. CONCLUSIONS/SIGNIFICANCE: This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.


Asunto(s)
Aedes/efectos de la radiación , Vectores de Enfermedades , Interferencia de ARN/efectos de la radiación , Aedes/inmunología , Aedes/virología , Animales , Frío , Expresión Génica/efectos de la radiación , Técnicas de Silenciamiento del Gen , Genes Reporteros , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Inmunidad Innata/efectos de la radiación
12.
PLoS Pathog ; 8(1): e1002470, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22241995

RESUMEN

The natural maintenance cycles of many mosquito-borne pathogens require establishment of persistent non-lethal infections in the invertebrate host. The mechanism by which this occurs is not well understood, but we have previously shown that an antiviral response directed by small interfering RNAs (siRNAs) is important in modulating the pathogenesis of alphavirus infections in the mosquito. However, we report here that infection of mosquitoes with an alphavirus also triggers the production of another class of virus-derived small RNAs that exhibit many similarities to ping-pong-dependent piwi-interacting RNAs (piRNAs). However, unlike ping-pong-dependent piRNAs that have been described previously from repetitive elements or piRNA clusters, our work suggests production in the soma. We also present evidence that suggests virus-derived piRNA-like small RNAs are capable of modulating the pathogenesis of alphavirus infections in dicer-2 null mutant mosquito cell lines defective in viral siRNA production. Overall, our results suggest that a non-canonical piRNA pathway is present in the soma of vector mosquitoes and may be acting redundantly to the siRNA pathway to target alphavirus replication.


Asunto(s)
Infecciones por Alphavirus/metabolismo , Alphavirus/fisiología , Secuencias Repetitivas Esparcidas , ARN Interferente Pequeño/biosíntesis , ARN Viral/biosíntesis , Replicación Viral/fisiología , Infecciones por Alphavirus/genética , Animales , Anopheles , Línea Celular , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , ARN Interferente Pequeño/genética , ARN Viral/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
13.
J Med Chem ; 48(11): 3858-73, 2005 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-15916438

RESUMEN

In this paper we describe our structure-based ligand design, synthetic strategy, and structure-activity relationship (SAR) studies that led to the identification of thiocarbamates (TCs), a novel class of non-nucleoside reverse transcriptase inhibitors (NNRTIs), isosteres of phenethylthiazolylthiourea (PETT) derivatives. Assuming as a lead compound O-[2-(phthalimido)ethyl]phenylthiocarbamate 12, one of the precursors of the previously described acylthiocarbamates (Ranise, A.; et al. J. Med. Chem. 2003, 46, 768-781), two targeted solution-phase TC libraries were prepared by parallel synthesis. The lead optimization strategy led to para-substituted TCs 31, 33, 34, 39, 40, 41, 44, 45, and 50, which were active against wild-type HIV-1 in MT-4-based assays at nanomolar concentrations (EC50 range: 0.04-0.01 microM). The most potent congener 50 (EC50 = 0.01 microM) bears a methyl group at position 4 of the phthalimide moiety and a nitro group at the para position of the N-phenyl ring. Most of the TCs showed good selectivity indices, since no cytotoxic effect was detected at concentrations as high as 100 microM. TCs 31, 37, 39, 40, and 44 significantly reduced the multiplication of the Y181C mutant, but they were inactive against K103R and K103N + Y181C mutants. Nevertheless, the fold increase in resistance of 41 was not greater than that of efavirenz against the K103R mutant in enzyme assays. The docking model predictions were consistent with in vitro biological assays of the anti-HIV-1 activity of the TCs and related compounds synthesized.


Asunto(s)
Fármacos Anti-VIH/síntesis química , Transcriptasa Inversa del VIH/metabolismo , Feniltiazoliltiourea/análogos & derivados , Feniltiazoliltiourea/síntesis química , Inhibidores de la Transcriptasa Inversa/síntesis química , Tiocarbamatos/síntesis química , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Técnicas Químicas Combinatorias , Farmacorresistencia Viral , Transcriptasa Inversa del VIH/genética , VIH-1/efectos de los fármacos , VIH-1/enzimología , VIH-1/genética , Modelos Moleculares , Mutación , Feniltiazoliltiourea/química , Feniltiazoliltiourea/farmacología , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacología , Relación Estructura-Actividad , Tiocarbamatos/química , Tiocarbamatos/farmacología
14.
Farmaco ; 60(2): 113-25, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15752470

RESUMEN

A series of 11 new 9H-bis-[1,2,4]triazolo[4,3-a:3',4'-d] [1,5]benzodiazepine derivatives 8e-o was synthesized. Ten of these compounds (8e-m,o), along with four analogues (8a-d) (previously synthesized by us) were tested in vitro in order to evaluate their cytotoxic and anti-HIV-1 properties. In this connection other six original compounds, i.e., five 9-substituted compounds prepared starting from the 6,12-diphenylderivative 8c (compounds 10, 11, 12, 13a,b) and the bis-triazolone derivative 14, were synthesized and tested for the same purpose. While none of the 20 compounds tested exhibited any appreciable anti-HIV-1 activity, some of them exhibited interesting cytotoxic properties, the best results being shown by compounds 8c,d,k and 11 (CC(50) range=3-12 microM). Therefore, these four compounds were further evaluated for their antiproliferative activity against a panel of human tumor cell lines; actually, compounds 8d, 8k and 11 showed antiproliferative properties against either or both leukemia- and lymphoma-derived cell lines in the low micromolar range.


Asunto(s)
Fármacos Anti-VIH/síntesis química , Antineoplásicos/síntesis química , Fármacos Anti-VIH/farmacología , Antineoplásicos/farmacología , Benzodiazepinas/síntesis química , Benzodiazepinas/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Concentración 50 Inhibidora , Relación Estructura-Actividad , Células Tumorales Cultivadas
15.
Farmaco ; 59(8): 637-44, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15262533

RESUMEN

A new series of variously substituted 3-aryl-2-[1H(2H)-benzotriazol-1(2)-yl]acrylonitriles was synthesized and tested for antiproliferative and antitubercular activity as part of our continuing research program in the antimicrobial and antitumor fields. The most cytotoxic derivatives (5a,g,i,j,l and 7b) (CC50 < 3.0 microM against MT-4 cells) were evaluated against a panel of human cell lines derived from hematological and solid tumors, using 6-mercaptopurine (6-MP) and etoposide as reference drugs. In particular, E-2-(5,6-dimethyl-1H-benzotriazol-1-yl)-3-(3-nitrophenyl)acrylonitrile (5g) resulted more potent than 6-MP on all cell lines, even if 2-14-fold less potent than etoposide. In the antitubercular screening, the derivatives 5i,j and 7e showed moderate activity against some resistant strains of Mycobacterium tested.


Asunto(s)
Acrilonitrilo , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Acrilonitrilo/análogos & derivados , Acrilonitrilo/síntesis química , Acrilonitrilo/farmacología , Antibacterianos/síntesis química , Antibacterianos/farmacología , Antituberculosos/síntesis química , Antituberculosos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...