Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Cells ; 12(23)2023 11 25.
Article En | MEDLINE | ID: mdl-38067130

Cohen syndrome is an autosomal recessive disorder caused by VPS13B (COH1) gene mutations. This syndrome is significantly underdiagnosed and is characterized by intellectual disability, microcephaly, autistic symptoms, hypotension, myopia, retinal dystrophy, neutropenia, and obesity. VPS13B regulates intracellular membrane transport and supports the Golgi apparatus structure, which is critical for neuron formation. We generated induced pluripotent stem cells from two patients with pronounced manifestations of Cohen syndrome and differentiated them into neural stem cells and neurons. Using transmission electron microscopy, we documented multiple new ultrastructural changes associated with Cohen syndrome in the neuronal cells. We discovered considerable disturbances in the structure of some organelles: Golgi apparatus fragmentation and swelling, endoplasmic reticulum structural reorganization, mitochondrial defects, and the accumulation of large autophagosomes with undigested contents. These abnormalities underline the ultrastructural similarity of Cohen syndrome to many neurodegenerative diseases. The cell models that we developed based on patient-specific induced pluripotent stem cells can serve to uncover not only neurodegenerative processes, but the causes of intellectual disability in general.


Induced Pluripotent Stem Cells , Intellectual Disability , Microcephaly , Myopia , Neural Stem Cells , Humans , Intellectual Disability/genetics , Microcephaly/genetics , Vesicular Transport Proteins/genetics , Obesity/genetics , Neurons
2.
Mol Genet Genomic Med ; 11(10): e2236, 2023 Oct.
Article En | MEDLINE | ID: mdl-37553796

BACKGROUND: Dysferlinopathy has a high prevalence in relatively isolated ethnic groups where consanguineous marriages are characteristic and/or the founder effect exists. However, the frequency of endemic mutations in most isolates has not been investigated. METHODS: The prevalence of the pathological DYSF gene variant (NM_003494.4); c.200_201delinsAT, p. Val67Asp (rs121908957) was investigated in an isolated Avar population in the Republic of Dagestan. Genetic screenings were conducted in a remote mountainous region characterized by a high level of consanguinity among its inhabitants. In total, 746 individuals were included in the screenings. RESULTS: This pathological DYSF gene variant causes two primary phenotypes of dysferlinopathy: limb-girdle muscular dystrophy (LGMD) type R2 and Miyoshi muscular dystrophy type 1. Results indicated a high prevalence of the allele at 14% (95% confidence interval [CI]: 12-17; 138 out of 1518 alleles), while the allele in the homozygous state was detected in 29 cases-3.8% (CI: 2.6-5.4). The population load for dysferlinopathy was 832.3 ± 153.9 per 100,000 with an average prevalence of limb-girdle muscular dystrophies ranging from 0.38 ± 0.38 to 5.93 ± 1.44 per 100,000. CONCLUSION: A significant burden of the allele was due to inbreeding, as evidenced by a deficiency of heterozygotes and the Wright fixation index equal to 0.14 (CI 0.06-0.23).

3.
Genes (Basel) ; 13(5)2022 05 20.
Article En | MEDLINE | ID: mdl-35627305

This study provides new data on the whole-exome sequencing of a cohort of children with autistic spectrum disorders (ASD) from an underexplored Russian population. Using both a cross-sectional approach involving a control cohort of the same ancestry and an annotation-based approach involving relevant public databases, we explored exonic single nucleotide variants and copy-number variation potentially involved in the manifestation of ASD. The study results reveal new potential ASD candidate-variants found in the studied Russian cohort and show a high prevalence of common ASD-associated genomic variants, especially those in the genes known to be associated with the manifestation of intellectual disabilities. Our screening of an ASD cohort from a previously understudied population allowed us to flag at least a few novel genes (IGLJ2, FAM21A, OR11H12, HIP1, PRAMEF10, and ZNF717) regarding their potential involvement in ASD.


Autism Spectrum Disorder , Autism Spectrum Disorder/genetics , Child , Cohort Studies , DNA Copy Number Variations , Genomics , Humans , Exome Sequencing
...