Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540945

RESUMEN

Lactococcus lactis is a lactic acid bacterium (LAB), generally recognized as safe, and has been widely used in the food industry, especially in fermented dairy products. Numerous studies have evaluated the technological and probiotic properties of lactococci; however, few studies have reported the probiotic characteristics of L. lactis strains isolated from dairy products. In this work, probiotic potential, including survival in simulated gastric juice, tolerance to bile salts, hydrophobicity, and auto- and co-aggregation, was evaluated in L. lactis strains from natural whey starter cultures. The results highlighted the potential probiotic properties of some strains under study, which showed high values of hydrophobicity and auto-aggregation and low values of co-aggregation with the tested pathogenic strains. In addition, studies of safety parameters, such as antibiotic susceptibility and haemolytic activity, confirmed the safety status of all strains under study. Finally, the four most promising strains were investigated for their ability to inhibit the enteroinvasive Escherichia coli (EIEC) and Salmonella Typhimurium adhesion to epithelial cells, using a model of co-cultured epithelial cells. The results demonstrated that L. lactis strains A3-A5-I4-I7 showed the ability to compete with pathogens as well as the ability to exert a protective effect on cells previously infected with E. coli or S. Typhimurium. The identification of new probiotic LAB strains from dairy products aims to produce novel functional foods.

2.
Sci Rep ; 13(1): 20332, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989843

RESUMEN

Drug resistance is one of the most difficult challenges facing tuberculosis (TB) control. Drug efflux is among the mechanisms leading to drug resistance. In our previous studies, we partially characterized the ABC-type MSMEG-3762/63 efflux pump in Mycobacterium smegmatis, which shares high percentage of identity with the Mycobacterium tuberculosis Rv1687/86c pump. MSMEG-3762/63 was shown to have extrusion activity for rifampicin and ciprofloxacin, used in first and second-line anti-TB treatments. Moreover, we described the functional role of the TetR-like MSMEG-3765 protein as a repressor of the MSMEG_3762/63/65 operon and orthologous Rv1687/86/85c in M. tuberculosis. Here we show that the operon is upregulated in the macrophage environment, supporting a previous observation of induction triggered by acid-nitrosative stress. Expression of the efflux pump was also induced by sub-inhibitory concentrations of rifampicin or ciprofloxacin. Both these drugs also prevented the binding of the MSMEG-3765 TetR repressor protein to its operator in the MSMEG_3762/63/65 operon. The hypothesis that these two drugs might be responsible for the induction of the efflux pump operon was assessed by bioinformatics analyses. Docking studies using a structural model of the regulator MSMEG-3765 showed that both antibiotics abolished the ability of this transcriptional repressor to recognize the efflux pump operon by interacting with the homodimer at different binding sites within the same binding pocket. Reduced binding of the repressor leads to induction of the efflux pump in M. smegmatis, and reduced efficacy of these two anti-mycobacterial drugs.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Rifampin/farmacología , Rifampin/metabolismo , Mycobacterium smegmatis/metabolismo , Proteínas Bacterianas/metabolismo , Ciprofloxacina/farmacología , Ciprofloxacina/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo
3.
Food Res Int ; 173(Pt 1): 113298, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803610

RESUMEN

Consumer attention to functional foods containing probiotics is growing because of their positive effects on human health. Kefir is a fermented milk beverage produced by bacteria and yeasts. Given the emerging kefir market, there is an increasing demand for new methodologies to certify product claims such as colony-forming units/g and bacterial taxa. MALDI-TOF MS proved to be useful for the detection/identification of bacteria in clinical diagnostics and agri-food applications. Recently, LC-MS/MS approaches have also been applied to the identification of proteins and proteotypic peptides of lactic acid bacteria in fermented food matrices. Here, we developed an innovative nanoLC-ESI-MS/MS-based methodology for profiling lactic acid bacteria in commercial and artisanal milk kefir products as well as in kefir grains at the genus, species and subspecies level. The proposed workflow enables the authentication of kefir label claims declaring the presence of probiotic starters. An overview of the composition of lactic acid bacteria was also obtained for unlabelled kefir highlighting, for the first time, the great potential of LC-MS/MS as a sensitive tool to assess the authenticity of fermented foods.


Asunto(s)
Kéfir , Lactobacillales , Humanos , Bacterias , Cromatografía Liquida , Kéfir/microbiología , Lactobacillales/metabolismo , Leche/microbiología , Espectrometría de Masas en Tándem
4.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36978787

RESUMEN

The brain, composed of billions of neurons, is a complex network of interacting dynamical systems controlling all body functions. Neurons are the building blocks of the nervous system and their impairment of their functions could result in neurodegenerative disorders. Accumulating evidence shows an increase of brain-affecting disorders, still today characterized by poor therapeutic options. There is a strong urgency to find new alternative strategies to prevent progressive neuronal loss. Polyphenols, a wide family of plant compounds with an equally wide range of biological activities, are suitable candidates to counteract chronic degenerative disease in the central nervous system. Herein, we will review their role in human healthcare and highlight their: antioxidant activities in reactive oxygen species-producing neurodegenerative pathologies; putative role as anti-acetylcholinesterase inhibitors; and protective activity in Alzheimer's disease by preventing Aß aggregation and tau hyperphosphorylation. Moreover, the pathology of these multifactorial diseases is also characterized by metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), most important for cellular function. In this scenario, polyphenols' action as natural chelators is also discussed. Furthermore, the critical importance of the role exerted by polyphenols on microbiota is assumed, since there is a growing body of evidence for the role of the intestinal microbiota in the gut-brain axis, giving new opportunities to study molecular mechanisms and to find novel strategies in neurological diseases.

5.
Foods ; 11(2)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35053966

RESUMEN

In southern Italy, some artisanal farms produce mozzarella and caciocavallo cheeses by using natural whey starter (NWS), whose microbial diversity is responsible for the characteristic flavor and texture of the final product. We studied the microbial community of NWS cultures of cow's milk (NWSc) for the production of caciocavallo and buffalo's milk (NWSb) for the production of mozzarella, both from artisanal farms. Bacterial identification at species and strain level was based on an integrative strategy, combining culture-dependent (sequencing of the 16S rDNA, species/subspecies-specific Polymerase Chain Reaction (PCR) and clustering by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) and culture-independent (next-generation sequencing analysis, NGS) approaches. Results obtained with both approaches showed the occurrence of five species of lactic acid bacteria in NWSb (Lactococcus lactis subsp. lactis, Lactobacillus fermentum, Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus) and five species in NWSc (Lc. lactis subsp. lactis, Enterococcus faecium, and S. thermophilus, Lb. helveticus, and Lb. delbrueckii), with the last two found only by the NGS analysis. Moreover, RAPD profiles, performed on Lc. lactis subsp. lactis different isolates from both NWSs, showed nine strains in NWSb and seven strains in NWSc, showing a microbial diversity also at strain level. Characterization of the microbiota of natural whey starters aims to collect new starter bacteria to use for tracing microbial community during the production of artisanal cheeses, in order to preserve their quality and authenticity, and to select new Lactic Acid Bacteria (LAB) strains for the production of functional foods.

6.
Environ Geochem Health ; 44(7): 2083-2099, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33871745

RESUMEN

An integrated approach using chemical and microbial indicators has been tested in two different sites of the Campania Plain (Southern Italy) with different land use covering and different hydrogeological features in order: (1) to define the water-rock interaction processes, (2) to differentiate sources of pollution in a detailed way (3) to evaluate the degree of water quality in the studied alluvial aquifer and (4) to identify the most worrying elements for human's health. Groundwater have showed a HCO3-Ca signature for both investigated sites, and a progressive enrichment in alkali ions has been highlighted moving from the boundary of the plain toward the coastal areas, due to groundwater interaction with volcanic rocks along the flow path. The application of the Factor Analysis allowed to identify different sources of pollution, which were attributed to (a) leaks in the sewer system for the Agro-Aversano Area and also the spreading of manure as fertilizers in agricultural activities for the Caiazzo Plain. Furthermore, it has been highlighted that the use of major elements, trace elements and microbiological indicators, allows to accurately differentiate contamination processes in progress. In fact, from the results of the Factor Analysis applied in the Agro-Aversano area, no significant statistically relationships between major elements and microbiological indicators of fecal contamination were highlighted, unlike the Caiazzo plain where statistically significant correlations have been found between major and trace elements and microbiological indicators. The use of a Groundwater Quality Index has shown general poor water quality for the majority of analyzed samples due to the high amount of Nitrate and Fecal indicators. The use of a Health Risk Assessment highlighted that Nitrate coupled with Fluoride represent the most important concern for human health compared to the all investigated parameters in both sites.


Asunto(s)
Agua Subterránea , Oligoelementos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Agua Subterránea/química , Humanos , Nitratos/análisis , Medición de Riesgo , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua
7.
Front Microbiol ; 11: 575828, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343518

RESUMEN

Multi-drug resistant tuberculosis (MDR-TB) represents a major health problem worldwide. Drug efflux and the activity of efflux transporters likely play important roles in the development of drug-tolerant and drug-resistant mycobacterial phenotypes. This study is focused on the action of a mycobacterial efflux pump as a mechanism of drug resistance. Previous studies demonstrated up-regulation of the TetR-like transcriptional regulator MSMEG_3765 in Mycobacterium smegmatis and its ortholog Rv1685c in Mycobacterium tuberculosis (Mtb) in acid-nitrosative stress conditions. MSMEG-3765 regulates the expression of the MSMEG_3762/63/65 operon, and of the orthologous region in Mtb (Rv1687c/86c/85c). MSMEG-3762 and Rv1687c are annotated as ATP-binding proteins, while MSMEG-3763 and Rv1686c are annotated as trans-membrane polypeptides, defining an ABC efflux pump in both M. smegmatis and Mtb. The two putative efflux systems share a high percentage of identity. To examine the role of the putative efflux system MSMEG-3762/63, we constructed and characterized a MSMEG-3763 deletion mutant in M. smegmatis (∆MSMEG_3763). By comparative analysis of wild type, knockout, and complemented strains, together with structural modeling and molecular docking bioinformatics analyses of the MSMEG-3763 trans-membrane protein, we define the protein complex MSMEG-3762/63 as an efflux pump. Moreover, we demonstrate involvement of this pump in biofilm development and in the extrusion of rifampicin and ciprofloxacin (CIP), antimicrobial drugs used in first- and second-line anti-TB therapies.

8.
Curr Microbiol ; 77(12): 3831-3841, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33079206

RESUMEN

The gut microbiota is a complex microbial ecosystem where bacteria, through mutual interactions, cooperate in maintaining of wellbeing and health. Lactobacilli are among the most important constituents of human and animal intestinal microbiota and include many probiotic strains. Their presence ensures protection from invasion of pathogens, as well as stimulation of the immune system and protection of the intestinal flora, often exerted through the ability to interact with mucus and extracellular matrix components. The main factors responsible for mediating adhesion of pathogens and commensals to the gut are cell surface proteins that recognize host targets, as mucus layer and extracellular matrix proteins. In the last years, several adhesins have been reported to be involved in lactobacilli-host interaction often miming the same mechanism used by pathogens.


Asunto(s)
Lactobacillus , Probióticos , Animales , Adhesión Bacteriana , Ecosistema , Matriz Extracelular , Humanos , Proteínas de la Membrana , Moco
9.
Food Chem ; 285: 111-118, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30797325

RESUMEN

Probiotic lactic acid bacteria (LAB) are generally employed in food industry because they contribute to nutritional value of fermented foods. Although knowledge of LAB composition is of high relevance for various industrial and biotechnological applications, the comprehensive identification of LAB species is sometimes technically challenging. Recently, MALDI-TOF MS-based methodologies for bacteria detection/identification in clinical diagnostics and agri-food proved to be an attractive strategy, complementary to traditional techniques for their sensitivity and specificity. In this study, we propose, for the first time, a novel methodology based on high resolution nano-LC-ESI-MS/MS for LAB identification at genus, species and sub-species level by using the sequence regions 33-52 and 72-82 of the S16 ribosomal protein as proteotypic peptide markers. The developed methodology was then applied to the analyses of buffalo and bovine whey starter cultures, thus assessing the applicability of the approach for the detection of LAB also in complex matrices.


Asunto(s)
Lactobacillales/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , Bovinos , Cromatografía Líquida de Alta Presión , Lactobacillales/aislamiento & purificación , Péptidos/análisis , Proteínas Ribosómicas/análisis , Proteínas Ribosómicas/metabolismo , Alineación de Secuencia , Proteína de Suero de Leche/metabolismo
10.
Molecules ; 23(9)2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181476

RESUMEN

Lactobacillus plantarum is one of the most predominant species in the human gut microbiota of healthy individuals. We have previously characterized some probiotic features of L. plantarum LM3, as the high resistance to different stress, the binding ability toward some extracellular matrix proteins and plasminogen and the immunomodulatory role of the surface expressed adhesin EnoA1. We have also identified the flmA, flmB and flmC genes, coding for putative proteins named FlmA, FlmB and FlmC, whose null mutations partially impaired biofilm development; the L. plantarum LM3⁻6 strain, carrying a deletion in flmC, showed a high rate of autolysis, supporting the hypothesis that FlmC might be involved in cell wall integrity. Here, we report the in-silico characterization of ΔTM-FlmC, a portion of the FlmC protein. The protein has been also expressed, purified and characterized by means of CD spectroscopy, ICP-mass and UHPLC-HRMS. The obtained experimental data validated the predicted model unveiling also the presence of a bound lipid molecule and of a Mg(II) ion. Overall, we provide strong evidences that ΔTM-FlmC belongs to the LytR-CpsA-Psr (LCP) family of domains and is involved in cell envelope biogenesis.


Asunto(s)
Proteínas Bacterianas/química , Biopelículas/crecimiento & desarrollo , Lactobacillus plantarum/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dicroismo Circular , Iones , Lípidos/química , Magnesio/química , Simulación del Acoplamiento Molecular , Proteínas Mutantes/química , Agregado de Proteínas , Dominios Proteicos , Reproducibilidad de los Resultados , Análisis de Secuencia de Proteína , Temperatura
11.
Front Microbiol ; 8: 2039, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29109706

RESUMEN

Mycobacterium tuberculosis has the ability to survive inside macrophages under acid-nitrosative stress. M. tuberculosis Rv1685c and its ortholog in M. smegmatis, MSMEG_3765, are induced on exposure to acid-nitrosative stress. Both genes are annotated as TetR transcriptional regulators, a family of proteins that regulate a wide range of cellular activities, including multidrug resistance, carbon catabolism and virulence. Here, we demonstrate that MSMEG_3765 is co-transcribed with the upstream genes MSMEG_3762 and MSMEG_3763, encoding efflux pump components. RTq-PCR and GFP-reporter assays showed that the MSMEG_3762/63/65 gene cluster, and the orthologous region in M. tuberculosis (Rv1687c/86c/85c), was up-regulated in a MSMEG_3765 null mutant, suggesting that MSMEG_3765 acts as a repressor, typical of this family of regulators. We further defined the MSMEG_3765 regulon using genome-wide transcriptional profiling and used reporter assays to confirm that the MSMEG_3762/63/65 promoter was induced under acid-nitrosative stress. A putative 36 bp regulatory motif was identified upstream of the gene clusters in both M. smegmatis and M. tuberculosis and purified recombinant MSMEG_3765 protein was found to bind to DNA fragments containing this motif from both M. smegmatis and M. tuberculosis upstream regulatory regions. These results suggest that the TetR repressor MSMEG_3765/Rv1685c controls expression of an efflux pump with an, as yet, undefined role in the mycobacterial response to acid-nitrosative stress.

12.
Sci Rep ; 7(1): 15805, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29150637

RESUMEN

Mesorhizobium loti contains ten genes coding for proteins sharing high amino acid sequence identity with members of the Ros/MucR transcription factor family. Five of these Ros/MucR family members from Mesorhizobium loti (Ml proteins) have been recently structurally and functionally characterized demonstrating that Ml proteins are DNA-binding proteins. However, the DNA-binding studies were performed using the Ros DNA-binding site with the Ml proteins. Currently, there is no evidence as to when the Ml proteins are expressed during the Mesorhizobium lo ti life cycle as well as no information concerning their natural DNA-binding site. In this study, we examine the ml genes expression profile in Mesorhizobium loti and show that ml1, ml2, ml3 and ml5 are expressed during planktonic growth and in biofilms. DNA-binding experiments show that the Ml proteins studied bind a conserved AT-rich site in the promoter region of the exoY gene from Mesorhizobium loti and that the proteins make important contacts with the minor groove of DNA. Moreover, we demonstrate that the Ml proteins studied form higher-order oligomers through their N-terminal region and that the same AT-rich site is recognized by MucR from Brucella abortus using a similar mechanism involving contacts with the minor groove of DNA and oligomerization.


Asunto(s)
Secuencia Rica en At/genética , Proteínas Bacterianas/metabolismo , Brucella abortus/metabolismo , ADN Bacteriano/genética , Mesorhizobium/metabolismo , Multimerización de Proteína , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Biopelículas/crecimiento & desarrollo , Brucella abortus/genética , Recuento de Colonia Microbiana , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Mesorhizobium/genética , Mutación/genética , Netropsina/metabolismo , Fenotipo , Plancton/crecimiento & desarrollo , Unión Proteica
13.
J Basic Microbiol ; 57(4): 353-357, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27859408

RESUMEN

Multi-functional surface proteins have been observed in a variety of pathogenic bacteria, where they mediate host cell adhesion and invasion, as well as in commensal bacterial species, were they mediate positive interaction with the host. Among these proteins, some glycolytic enzymes, expressed on the bacterial cell surface, can bind human extracellular matrix components (ECM). A major target for them is collagen, an abundant glycoprotein of connective tissues. We have previously shown that the enolase EnoA1 of Lactobacillus plantarum, one of the most predominant species in the gut microbiota of healthy individuals, is involved in binding with collagen type I (CnI). In this study, we found that PDHB, a component of the pyruvate dehydrogenase complex, contributes to the L. plantarum LM3 adhesion to CnI. By a cellular adhesion assay to immobilized CnI, we show that LM3-B1 cells, carrying a null mutation in the pdhB gene, bind to CnI - coated surfaces less efficiently than wild-type cells. Moreover, we show that the PDHB-CnI interaction requires a native state for PDHB. We also analyzed the ability to develop biofilm in wild-type and mutant strains and we found that the lack of the PDHB on cell surface generates cells partially impaired in biofilm development.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Colágeno/metabolismo , Lactobacillus plantarum/enzimología , Complejo Piruvato Deshidrogenasa/química , Complejo Piruvato Deshidrogenasa/metabolismo , Adhesinas Bacterianas/química , Adhesión Bacteriana , Humanos , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Mutación , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/aislamiento & purificación
14.
Arch Microbiol ; 198(3): 295-300, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26546316

RESUMEN

Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Lactobacillus plantarum/genética , Familia de Multigenes/genética , Proteínas Bacterianas/genética , Perfilación de la Expresión Génica , Genes Reguladores/genética , Lactobacillus plantarum/metabolismo , Operón/genética
15.
J Basic Microbiol ; 55(7): 890-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25721875

RESUMEN

Collagen is a target of pathogens for adhesion, colonization, and invasion of host tissue. Probiotic bacteria can mimic the same mechanism as used by the pathogens in the colonization process, expressing cell surface proteins that specifically interact with extracellular matrix component proteins. The capability to bind collagen is expressed by several Lactobacillus isolates, including some Lactobacillus plantarum strains. In this study we report the involvement of the L. plantarum EnoA1 alfa-enolase in type I collagen (CnI) binding. By adhesion assays, we show that the mutant strain LM3-CC1, carrying a null mutation in the enoA1 gene, binds to immobilized collagen less efficiently than wild type strain. CnI overlay assay and Elisa tests, performed on the purified EnoA1, show that this protein can bind collagen both under denaturing and native conditions. By using truncated recombinant enolase proteins, we also show that the region spanning from 73rd to the 140th amino acid residues is involved in CnI binding.


Asunto(s)
Adhesión Bacteriana , Colágeno/metabolismo , Lactobacillus plantarum/enzimología , Fosfopiruvato Hidratasa/aislamiento & purificación , Fosfopiruvato Hidratasa/metabolismo , Lactobacillus plantarum/genética , Proteínas de la Membrana/metabolismo , Mutación , Fosfopiruvato Hidratasa/genética , Unión Proteica
16.
Microbiol Res ; 169(2-3): 121-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24054819

RESUMEN

Lactobacillus plantarum is among the species with a probiotic activity. Adhesion of probiotic bacteria to host tissues is an important principle for strain selection, because it represents a crucial step in the colonization process of either pathogens or commensals. Most bacterial adhesins are proteins, and a major target for them is fibronectin, an extracellular matrix glycoprotein. In this study we demonstrate that PDHB, a component of the pyruvate dehydrogenase complex, is a factor contributing to fibronectin-binding in L. plantarum LM3. By means of fibronectin overlay immunoblotting assay, we identified a L. plantarum LM3 surface protein with apparent molecular mass of 35 kDa. Mass spectrometric analysis shows that this protein is the pyruvate dehydrogenase E1 beta-subunit (PDHB). The corresponding pdhB gene is located in a 4-gene cluster encoding pyruvate dehydrogenase. In LM3-B1, carrying a null mutation in pdhB, the 35 kDa adhesin was not anymore detectable by immunoblotting assay. Nevertheless, the pdhB null mutation did not abolish pdhA, pdhC, and pdhD transcription in LM3-B1. By adhesion assays, we show that LM3-B1 cells bind to immobilized fibronectin less efficiently than wild type cells. Moreover, we show that pdhB expression is negatively regulated by the CcpA protein and is induced by bile.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Fibronectinas/metabolismo , Lactobacillus plantarum/enzimología , Piruvato Deshidrogenasa (Lipoamida)/genética , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Proteínas Bacterianas/genética , Pared Celular/enzimología , Pared Celular/genética , Fibronectinas/genética , Regulación Bacteriana de la Expresión Génica , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Unión Proteica
17.
J Basic Microbiol ; 53(1): 62-71, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22585750

RESUMEN

The aim of this study was to identify genes involved in biofilm development in the probiotic lactic acid bacterium Lactobacillus plantarum. The ability of L. plantarum LM3 and of some derivative mutant strains to form biofilm has been investigated. Biofilm microtitre plate assays showed that L. plantarum LM3-2, carrying a null mutation in the ccpA gene, coding the CcpA master regulator, was partially impaired in biofilm production compared to wild type (LM3). Moreover, we found three genes in the L. plantarum genome, hereby named flmA, flmB, and flmC, whose deduced amino acid sequences show significant identity with the Streptococcus mutans BrpA (biofilm regulatory protein A). We investigated the role of FlmA, FlmB, and FlmC in biofilm formation by isolating strains carrying null mutations in the corresponding genes. Our results suggest involvement of the Flm proteins in biofilm development. Moreover, transcriptional studies show that expression of flmA, flmB, and flmC is under the control of CcpA. These results, together with the reduced ability of LM3-2 (ccpA1) to form biofilm, strongly suggest a positive role of the master regulator CcpA in biofilm development.


Asunto(s)
Proteínas Bacterianas/fisiología , Biopelículas/crecimiento & desarrollo , Lactobacillus plantarum/fisiología , Proteínas Represoras/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriólisis , Genes Bacterianos , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Probióticos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcripción Genética
18.
J Proteomics ; 75(13): 4050-61, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22634038

RESUMEN

Lactobacillus plantarum is a facultative heterofermentative lactic acid bacterium widely used in the production of most fermented food due to its ability to thrive in several environmental niches, including the human gut. In order to cope with different growth conditions, it has developed complex molecular response mechanisms, characterized by the induction of a large set of proteins mainly regulated by HrcA and CtsR repressors as well as by global regulators such as carbon catabolite control protein A (CcpA). In this study, the role of CcpA in the regulation of growth under anaerobiosis and aerobiosis, and the adaptation to aeration in L. plantarum WCFS1 were comprehensively investigated by differential proteomics. The inactivation of ccpA, in both growth conditions, significantly changed the expression level of 76 proteins, mainly associated with carbohydrate and energy metabolism, membrane transport, nucleotide metabolism, protein biosynthesis and folding. The role of CcpA as pleiotropic regulator was particularly evident at the shift from homolactic fermentation to mixed fermentation. Proteomic results also indicated that the mutant strain was more responsive to aerobic growth condition.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Represión Catabólica/fisiología , Proteínas de Unión al ADN/genética , Lactobacillus plantarum/crecimiento & desarrollo , Factores de Transcripción/genética , Aerobiosis , Lactobacillus plantarum/efectos de los fármacos , Lactobacillus plantarum/genética , Proteómica
19.
Int J Food Microbiol ; 155(1-2): 51-9, 2012 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-22326142

RESUMEN

The growth of Lactobacillus plantarum WCFS1 and of its ΔccpA ery mutant, WCFS1-2, was compared in batch fermentations in a complex medium at controlled pH (6.5) and temperature (30°C) with or without aeration, in order to evaluate the effect of ccpA inactivation and aeration on growth, metabolism and stress resistance. Inactivation of ccpA and, to a lesser extent, aeration, significantly affected growth, expression of proteins related to pyruvate metabolism and stress, and tolerance to heat, oxidative and cold/starvation stresses. The specific growth rate of the mutant was ca. 60% of that of the wild type strain. Inactivation of ccpA and aerobic growth significantly affected yield and production of lactic and acetic acid. Stationary phase cells were more stress tolerant than exponential phase cells with little or no effect of inactivation of ccpA or aeration. On the other hand, for exponential phase cells inactivation of ccpA impaired both heat stress and cold/starvation stress, but increased oxidative stress tolerance. For both strains, aerobically grown cells were more tolerant of stresses. Evidence for entry in a viable but non-culturable status upon prolonged exposure to cold and starvation was found. Preliminary results of a differential proteomic study further confirmed the role of ccpA in the regulation of carbohydrate catabolism and class I stress response genes and allow to gain further insight on the role of this pleiotropic regulator in metabolism and stress. This is the first study in which the impact of aerobic growth on stress tolerance of L. plantarum is evaluated. Although aerobic cultivation in batch fermentations does not improve growth it does improve stress tolerance, and may have significant technological relevance for the preservation of starter and probiotic cultures.


Asunto(s)
Aerobiosis , Proteínas Bacterianas/metabolismo , Lactobacillus plantarum/fisiología , Proteínas Represoras/metabolismo , Estrés Fisiológico , Anaerobiosis , Proteínas Bacterianas/genética , Frío , Fermentación , Regulación Bacteriana de la Expresión Génica , Silenciador del Gen , Lactobacillus plantarum/genética , Lactobacillus plantarum/crecimiento & desarrollo , Lactobacillus plantarum/metabolismo , Mutación , Proteómica , Proteínas Represoras/genética
20.
J Microbiol ; 49(6): 950-5, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22203558

RESUMEN

Lactobacillus plantarum is commonly used in the food industry as a starter in various fermentations, especially in vegetable fermentations, in which starch is a common substrate. This polysaccharide, which is obtained from potatoes or corn and is hydrolysed mainly to maltose and glucose by acids or enzymes, is commercially used for the production of lactate by lactic acid fermentation. In this study, we describe the regulation of malE gene expression in L. plantarum. This gene, located in a 7-gene cluster, probably organized in an operon, encodes a putative maltose/maltodextrin-binding protein. We studied the expression of malE in L. plantarum LM3 (wild type) and in LM3-2 (ccpA1), which carries a null mutation in the ccpA gene, encoding the catabolite control protein A (CcpA). In the presence of glucose, expression of the MalE protein was higher in the mutant strain as compared to that in the wild-type strain. Transcription of the malE gene was induced by maltose and regulated by a CcpA-mediated carbon catabolite repression. Further, we isolated strains carrying mutations in 2 genes, lp_0172 and lp_0173, whose deduced amino acid sequences share significant identity with MalR, a regulator of the maltose operon in several gram-positive bacteria. A double mutant exhibited glucose-insensitive malE transcription, while absence of the functional Lp_0172 open reading frame had no effect on malE expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Lactobacillus plantarum/metabolismo , Proteínas de Unión a Maltosa/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , Lactobacillus plantarum/genética , Proteínas de Unión a Maltosa/metabolismo , Datos de Secuencia Molecular , Proteínas Represoras/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA