Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Cancer ; 24(1): 346, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500100

RESUMEN

BACKGROUND: The androgen/androgen receptor (AR)-signaling axis plays a central role in prostate cancer (PCa). Upon androgen-binding the AR dimerizes with another AR, and translocates into the nucleus where the AR-dimer activates/inactivates androgen-dependent genes. Consequently, treatments for PCa are commonly based on androgen deprivation therapy (ADT). The clinical benefits of ADT are only transitory and most tumors develop mechanisms allowing the AR to bypass its need for physiological levels of circulating androgens. Clinical failure of ADT is often characterized by the synthesis of a constitutively active AR splice variant, termed AR-V7. AR-V7 mRNA expression is considered as a resistance mechanism following ADT. AR-V7 no longer needs androgenic stimuli for nuclear entry and/or dimerization. METHODS: Our goal was to mechanistically decipher the interaction between full-length AR (AR-FL) and AR-V7 in AR-null HEK-293 cells using the NanoLuc Binary Technology under androgen stimulation and deprivation conditions. RESULTS: Our data point toward a hypothesis that AR-FL/AR-FL homodimers form in the cytoplasm, whereas AR-V7/AR-V7 homodimers localize in the nucleus. However, after androgen stimulation, all the AR-FL/AR-FL, AR-FL/AR-V7 and AR-V7/AR-V7 dimers were localized in the nucleus. CONCLUSIONS: We showed that AR-FL and AR-V7 form heterodimers that localize to the nucleus, whereas AR-V7/AR-V7 dimers were found to localize in the absence of androgens in the nucleus.


Asunto(s)
Luciferasas , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Andrógenos , Neoplasias de la Próstata/patología , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Células HEK293 , Neoplasias de la Próstata Resistentes a la Castración/patología , Isoformas de Proteínas/genética
2.
Cell Tissue Res ; 375(3): 665-683, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30328540

RESUMEN

Tissue lectins appear to be involved in a broad range of physiological processes, as reflected for the members of the family of galectins by referring to them as adhesion/growth-regulatory effectors. In order to clarify the significance of galectin presence, key challenges are to define their binding partners and the profile of localization. Having identified the chicken galectin-related interfiber protein (C-GRIFIN) as lens-specific protein present in the main body of adult lens, we here report its interaction with lens proteins in ligand blotting. The assumption for pairing with α-, ß- and δ-crystallins was ascertained by mass spectrometric detection of their presence in eluted fractions obtained by affinity chromatography. Biochemical and immunohistochemical monitoring revealed protein presence from about 3-day-old embryos onwards, mostly in the cytoplasm of elongated posterior cells, later in secondary lens fiber cells. On the level of gene expression, its promoter was activated by transcription factor L-Maf alone and together with Pax6 like a crystallin gene, substantiating C-GRIFIN's status as lens-specific galectin. Using this combined strategy for counterreceptor and expression profiling by bio- and histochemical methods including light, electron and fluorescence microscopy, respective monitoring in lens development can now be taken to the level of the complete galectin family.


Asunto(s)
Pollos/genética , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cristalino/embriología , Cristalino/metabolismo , Factor de Transcripción PAX6/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Cromatografía de Afinidad , Proteínas del Ojo/genética , Genes Reporteros , Cristalino/ultraestructura , Ligandos , Factores de Transcripción Maf , Espectrometría de Masas , Unión Proteica
3.
Food Chem ; 149: 302-6, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24295710

RESUMEN

In recent years, honey has become subject of DNA analysis due to potential risks evoked by microorganisms, allergens or genetically modified organisms. However, so far, only a few DNA extraction procedures are available, mostly time-consuming and laborious. Therefore, we developed an automated DNA extraction method from pollen in honey based on a CTAB buffer-based DNA extraction using the Maxwell 16 instrument and the Maxwell 16 FFS Nucleic Acid Extraction System, Custom-Kit. We altered several components and extraction parameters and compared the optimised method with a manual CTAB buffer-based DNA isolation method. The automated DNA extraction was faster and resulted in higher DNA yield and sufficient DNA purity. Real-time PCR results obtained after automated DNA extraction are comparable to results after manual DNA extraction. No PCR inhibition was observed. The applicability of this method was further successfully confirmed by analysis of different routine honey samples.


Asunto(s)
Automatización/métodos , Fraccionamiento Químico/métodos , ADN/aislamiento & purificación , Contaminación de Alimentos/análisis , Miel/análisis , Polen/química , ADN/genética , Miel/microbiología , Polen/microbiología , Reacción en Cadena de la Polimerasa
4.
J Bacteriol ; 189(5): 1816-26, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17189365

RESUMEN

The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains eight genes coding for methyl-accepting chemotaxis proteins (MCPs) McpS to McpZ and one gene coding for a transducer-like protein, IcpA. Seven of the MCPs are localized in the cytoplasmic membrane via two membrane-spanning regions, whereas McpY and IcpA lack such hydrophobic regions. The periplasmic regions of McpU, McpV, and McpX contain the small-ligand-binding domain Cache. In addition, McpU possesses the ligand-binding domain TarH. By probing gene expression with lacZ fusions, we have identified mcpU and mcpX as being highly expressed. Deletion of any one of the receptor genes caused impairments in the chemotactic response toward most organic acids, amino acids, and sugars in a swarm plate assay. The data imply that chemoreceptor proteins in S. meliloti can sense more than one class of carbon source and suggest that many or all receptors work as an ensemble. Tactic responses were virtually eliminated for a strain lacking all nine receptor genes. Capillary assays revealed three important sensors for the strong attractant proline: McpU, McpX, and McpY. Receptor deletions variously affected free-swimming speed and attractant-induced chemokinesis. Noticeably, cells lacking mcpU were swimming 9% slower than the wild-type control. We infer that McpU inhibits the kinase activity of CheA in the absence of an attractant. Cells lacking one of the two soluble receptors were impaired in chemokinetic proficiency by more than 50%. We propose that the internal sensors, IcpA and the PAS domain containing McpY, monitor the metabolic state of S. meliloti.


Asunto(s)
Proteínas Bacterianas/fisiología , Quimiotaxis , Proteínas de la Membrana/fisiología , Sinorhizobium meliloti/fisiología , Aminoácidos/farmacología , Proteínas Bacterianas/genética , Carbohidratos/farmacología , Genoma Bacteriano , Proteínas de la Membrana/genética , Proteínas Quimiotácticas Aceptoras de Metilo , Movimiento , Sinorhizobium meliloti/genética , Transcripción Genética
5.
J Biol Chem ; 278(41): 39303-10, 2003 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-12890674

RESUMEN

Hsp90 is a dimeric, ATP-regulated molecular chaperone. Its ATPase cycle involves the N-terminal ATP binding domain (amino acids (aa) 1-272) and, in addition, to some extent the middle domain (aa 273-528) and the C-terminal dimerization domain (aa 529-709). To analyze the contribution of the different domains and the oligomeric state on the progression of the ATPase cycle of yeast Hsp90, we created deletion constructs lacking either the C-terminal or both the C-terminal and the middle domain. To test the effect of dimerization on the ATPase activity of the different constructs, we introduced a Cys residue at the C-terminal ends of the constructs, which allowed covalent dimerization. We show that all monomeric constructs tested exhibit reduced ATPase activity and a decreased affinity for ATP in comparison with wild type Hsp90. The covalently linked dimers lacking only the C-terminal domain hydrolyze ATP as efficiently as the wild type protein. Furthermore, this construct is able to trap the ATP molecule similar to the full-length protein. This demonstrates that in the ATPase cycle, the C-terminal domain can be replaced by a cystine bridge. In contrast, the ATPase activity of the artificially linked N-terminal domains remains very low and bound ATP is not trapped. Taken together, we show that both the dimerization of the N-terminal domains and the association of the N-terminal with the middle domain are important for the efficiency of the ATPase cycle. These reactions are synergistic and require Hsp90 to be in the dimeric state.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Cisteína/química , Dimerización , Genes Fúngicos , Proteínas HSP90 de Choque Térmico/genética , Hidrólisis , Cinética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
6.
J Biol Chem ; 278(12): 10328-33, 2003 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-12525481

RESUMEN

The molecular chaperone Hsp90 is known to be involved in the activation of key regulatory proteins such as kinases, steroid hormone receptors, and transcription factors in an ATP-dependent manner. During the chaperone cycle, Hsp90 has been found associated with the partner protein Hop/Sti1, which seems to be required for the progression of the cycle. However, little is known about its specific function. Here we have investigated the interaction of Sti1 from Saccharomyces cerevisiae with Hsp90 and its influence on the ATPase activity. We show that the inhibitory mechanism of Sti1 on the ATPase activity of Hsp90 is non-competitive. Sti1 binds to the N- and C-terminal part of Hsp90 and prevents the N-terminal dimerization reaction that is required for efficient ATP hydrolysis. The first 24 amino acids of Hsp90, a region shown previously to be important for the association of the N-terminal domains and stimulation of ATP hydrolysis, seems to be important for this interaction.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Proteínas Fúngicas/fisiología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/fisiología , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Dimerización , Proteínas HSP90 de Choque Térmico/química , Proteínas de Choque Térmico , Cloruro de Potasio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...