Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Nucleic Acids Res ; 52(D1): D891-D899, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37953337

Ensembl (https://www.ensembl.org) is a freely available genomic resource that has produced high-quality annotations, tools, and services for vertebrates and model organisms for more than two decades. In recent years, there has been a dramatic shift in the genomic landscape, with a large increase in the number and phylogenetic breadth of high-quality reference genomes, alongside major advances in the pan-genome representations of higher species. In order to support these efforts and accelerate downstream research, Ensembl continues to focus on scaling for the rapid annotation of new genome assemblies, developing new methods for comparative analysis, and expanding the depth and quality of our genome annotations. This year we have continued our expansion to support global biodiversity research, doubling the number of annotated genomes we support on our Rapid Release site to over 1700, driven by our close collaboration with biodiversity projects such as Darwin Tree of Life. We have also strengthened support for key agricultural species, including the first regulatory builds for farmed animals, and have updated key tools and resources that support the global scientific community, notably the Ensembl Variant Effect Predictor. Ensembl data, software, and tools are freely available.


Databases, Genetic , Genomics , Animals , Genome , Molecular Sequence Annotation , Phylogeny , Software , Humans
2.
Nucleic Acids Res ; 51(D1): D933-D941, 2023 01 06.
Article En | MEDLINE | ID: mdl-36318249

Ensembl (https://www.ensembl.org) has produced high-quality genomic resources for vertebrates and model organisms for more than twenty years. During that time, our resources, services and tools have continually evolved in line with both the publicly available genome data and the downstream research and applications that utilise the Ensembl platform. In recent years we have witnessed a dramatic shift in the genomic landscape. There has been a large increase in the number of high-quality reference genomes through global biodiversity initiatives. In parallel, there have been major advances towards pangenome representations of higher species, where many alternative genome assemblies representing different breeds, cultivars, strains and haplotypes are now available. In order to support these efforts and accelerate downstream research, it is our goal at Ensembl to create high-quality annotations, tools and services for species across the tree of life. Here, we report our resources for popular reference genomes, the dramatic growth of our annotations (including haplotypes from the first human pangenome graphs), updates to the Ensembl Variant Effect Predictor (VEP), interactive protein structure predictions from AlphaFold DB, and the beta release of our new website.


Databases, Genetic , Software , Animals , Humans , Molecular Sequence Annotation , Genomics , Genome
3.
Nucleic Acids Res ; 50(D1): D988-D995, 2022 01 07.
Article En | MEDLINE | ID: mdl-34791404

Ensembl (https://www.ensembl.org) is unique in its flexible infrastructure for access to genomic data and annotation. It has been designed to efficiently deliver annotation at scale for all eukaryotic life, and it also provides deep comprehensive annotation for key species. Genomes representing a greater diversity of species are increasingly being sequenced. In response, we have focussed our recent efforts on expediting the annotation of new assemblies. Here, we report the release of the greatest annual number of newly annotated genomes in the history of Ensembl via our dedicated Ensembl Rapid Release platform (http://rapid.ensembl.org). We have also developed a new method to generate comparative analyses at scale for these assemblies and, for the first time, we have annotated non-vertebrate eukaryotes. Meanwhile, we continually improve, extend and update the annotation for our high-value reference vertebrate genomes and report the details here. We have a range of specific software tools for specific tasks, such as the Ensembl Variant Effect Predictor (VEP) and the newly developed interface for the Variant Recoder. All Ensembl data, software and tools are freely available for download and are accessible programmatically.


Databases, Genetic , Genome/genetics , Molecular Sequence Annotation , Software , Animals , Computational Biology/classification , Humans
4.
Nucleic Acids Res ; 50(D1): D996-D1003, 2022 01 07.
Article En | MEDLINE | ID: mdl-34791415

Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here, we present our largest increase in plant, metazoan and fungal genomes since the project's inception creating one of the world's most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We detail our new efforts in gene annotation, our emerging support for pangenome analysis, our efforts to accelerate data dissemination through the Ensembl Rapid Release resource and our new AlphaFold visualization. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl's release cycle.


Databases, Genetic , Genomics , Internet , Software , Animals , Computational Biology , Genome, Bacterial/genetics , Genome, Fungal/genetics , Genome, Plant/genetics , Plants/classification , Plants/genetics , Vertebrates/classification , Vertebrates/genetics
5.
Hum Mutat ; 43(8): 986-997, 2022 08.
Article En | MEDLINE | ID: mdl-34816521

The Ensembl Variant Effect Predictor (VEP) is a freely available, open-source tool for the annotation and filtering of genomic variants. It predicts variant molecular consequences using the Ensembl/GENCODE or RefSeq gene sets. It also reports phenotype associations from databases such as ClinVar, allele frequencies from studies including gnomAD, and predictions of deleteriousness from tools such as Sorting Intolerant From Tolerant and Combined Annotation Dependent Depletion. Ensembl VEP includes filtering options to customize variant prioritization. It is well supported and updated roughly quarterly to incorporate the latest gene, variant, and phenotype association information. Ensembl VEP analysis can be performed using a highly configurable, extensible command-line tool, a Representational State Transfer application programming interface, and a user-friendly web interface. These access methods are designed to suit different levels of bioinformatics experience and meet different needs in terms of data size, visualization, and flexibility. In this tutorial, we will describe performing variant annotation using the Ensembl VEP web tool, which enables sophisticated analysis through a simple interface.


Genomics , Software , Computational Biology , Databases, Genetic , Gene Frequency , Humans , Molecular Sequence Annotation , Phenotype
6.
Nutrients ; 13(12)2021 Nov 27.
Article En | MEDLINE | ID: mdl-34959832

Refined foods are commonly depleted in certain bioactive components that are abundant in 'natural' (plant) foods. Identification and addition of these 'missing' bioactives in the diet is, therefore, necessary to counteract the deleterious impact of convenience food. In this study, multiomics approaches were employed to assess the addition of the popular supplementary soluble dietary fibers inulin and psyllium, both in isolation and in combination with a refined animal feed. A 16S rRNA sequencing and 1H NMR metabolomic investigation revealed that, whilst inulin mediated an increase in Bifidobacteria, psyllium elicited a broader microbial shift, with Parasutterella and Akkermansia being increased and Enterorhabdus and Odoribacter decreased. Interestingly, the combination diet benefited from both inulin and psyllium related microbial changes. Psyllium mediated microbial changes correlated with a reduction of glucose (R -0.67, -0.73, respectively, p < 0.05) and type 2 diabetes associated metabolites: 3-methyl-2-oxovaleric acid (R -0.72, -0.78, respectively, p < 0.05), and citrulline (R -0.77, -0.71, respectively, p < 0.05). This was in line with intestinal and hepatic carbohydrate response (e.g., Slc2a2, Slc2a5, Khk and Fbp1) and hepatic lipogenesis (e.g., Srebf1 and Fasn), which were significantly reduced under psyllium addition. Although established in the liver, the intestinal response associated with psyllium was absent in the combination diet, placing greater significance upon the established microbial, and subsequent metabolomic, shift. Our results therefore highlight the heterogeneity that exists between distinct dietary fibers in the context of carbohydrate uptake and metabolism, and supports psyllium containing combination diets, for their ability to negate the impact of a refined diet.


Dietary Fiber/pharmacology , Dietary Supplements , Inulin/pharmacology , Psyllium/pharmacology , Animal Feed , Animals , Diet/methods , Fast Foods , Gastrointestinal Microbiome/drug effects , Glucose/metabolism , Intestines/metabolism , Lipogenesis/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Phytochemicals/pharmacology , RNA, Ribosomal, 16S/analysis
7.
Sci Rep ; 7(1): 10671, 2017 09 06.
Article En | MEDLINE | ID: mdl-28878263

Pregnancy is associated with profound maternal metabolic changes, necessary for the growth and development of the fetus, mediated by reproductive signals acting on metabolic organs. However, the role of brown adipose tissue (BAT) in regulating gestational metabolism is unknown. We show that BAT phenotype is lost in murine pregnancy, while there is a gain of white adipose tissue (WAT)-like features. This is characterised by reduced thermogenic capacity and mitochondrial content, accompanied by increased levels of markers of WAT and lipid accumulation. Surgical ablation of BAT prior to conception caused maternal and fetal hyperlipidemia, and consequently larger fetuses. We show that BAT phenotype is altered from day 5 of gestation, implicating early pregnancy factors, which was confirmed by reduced expression of BAT markers in progesterone challenged oophorectomised mice. Moreover, in vitro data using primary BAT cultures show a direct impact of progesterone on expression of Ucp1. These data demonstrate that progesterone mediates a phenotypic change in BAT, which contributes to the gestational metabolic environment, and thus overall fetal size.


Fetal Development , Adipocytes/cytology , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Animals , Biomarkers , Cell Differentiation , Energy Metabolism , Female , Lipid Metabolism , Lipids/blood , Male , Mice , Mitochondria/genetics , Mitochondria/metabolism , Phenotype , Pregnancy , Progesterone/metabolism , Signal Transduction
...