Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Bioinform Biol Insights ; 18: 11779322241267056, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081669

RESUMEN

MYC is a transcription factor crucial for maintaining cellular homeostasis, and its dysregulation is associated with highly aggressive cancers. Despite being considered "undruggable" due to its unstable protein structure, MYC gains stability through its interaction with its partner protein, MAX. The MYC-MAX heterodimer orchestrates the expression of numerous genes that contribute to an oncogenic phenotype. Previous efforts to develop small molecules, disrupting the MYC-MAX interaction, have shown promise in vitro but none have gained clinical approval. Our current computer-aided study utilizes an approach to explore drug repurposing as a strategy for inhibiting the c-MYC-MAX interaction. We have focused on compounds from DrugBank library, including Food and Drug Administration-approved drugs or those under investigation for other medical conditions. First, we identified a potential druggable site on flat interface of the c-MYC protein, which served as the target for virtual screening. Using both activity-based and structure-based screening, we comprehensively assessed the entire DrugBank library. Structure-based virtual screening was performed on AutoDock Vina and Glide docking tools, while activity-based screening was performed on two independent quantitative structure-activity relationship models. We focused on the top 2% of hit molecules from all screening methods. Ultimately, we selected consensus molecules from these screenings-those that exhibited both a stable interaction with c-MYC and superior inhibitory activity against c-MYC-MAX interaction. Among the evaluated molecules, we identified a protein kinase inhibitor (tyrosine kinase inhibitor [TKI]) known as nilotinib as a promising candidate targeting c-MYC-MAX dimer. Molecular dynamic simulations demonstrated a stable interaction between MYC and nilotinib. The interaction with nilotinib led to the stabilization of a region of the MYC protein that is distorted in apo-MYC and is important for MAX binding. Further analysis of differentially expressed gene revealed that nilotinib, uniquely among the tested TKIs, induced a gene expression program in which half of the genes were known to be responsive to c-MYC. Our findings provide the foundation for subsequent in vitro and in vivo investigations aimed at evaluating the efficacy of nilotinib in managing MYC oncogenic activity.

2.
Medicina (Kaunas) ; 59(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36676727

RESUMEN

Background and Objectives: Lamellar ichthyosis is a rare skin disease characterized by large, dark brown plate-like scales on the entire body surface with minimum or no erythema. This phenotype is frequently associated with a mutation in the TGM1 gene, encoding the enzyme transglutaminase 1 which plays a catalytic role in the formation of the cornified cell envelop. The present study aimed to carry out clinical and genetic characterization of the autosomal recessive lamellar ichthyosis family from Balochistan. Materials and Methods: A consanguineous family with lamellar ichthyosis was enrolled from Balochistan, Pakistan. PCR amplification of all the exons and splice site junctions of the TGM1 gene followed by Sanger sequencing was performed on the genomic DNA. The identified variant was checked by In silico prediction tools to evaluate the effect of the variant on protein. Results: Sanger sequencing identified a homozygous nonsense variant c.131G >A (p.Trp44*) in the TGM1 gene that segregated in the autosomal recessive mode of inheritance in the family. The identified variant results in premature termination of transcribed mRNA and is predicted to cause a truncated or absent translation product transglutaminase-1 (TGase-1) accompanied by loss of catalytic activity, causing a severe clinical phenotype of lamellar ichthyosis in the patients. Conclusions: Here, we report a consanguineous lamellar ichthyosis family with a homozygous nonsense variant in the TGM1 gene. The variant is predicted as pathogenic by different In silico prediction tools.


Asunto(s)
Ictiosis Lamelar , Humanos , Ictiosis Lamelar/genética , Ictiosis Lamelar/patología , Mutación , Piel/patología , Fenotipo , Exones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA