Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 11(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35743361

RESUMEN

Focal segmental glomerulosclerosis (FSGS) involves podocyte injury. In patients with nephrotic syndrome, progression to end-stage renal disease often occurs over the course of 5 to 10 years. The diagnosis is based on a renal biopsy. It is presumed that primary FSGS is caused by an unknown plasma factor that might be responsible for the recurrence of FSGS after kidney transplantation. The nature of circulating permeability factors is not explained and particular biological molecules responsible for inducing FSGS are still unknown. Several substances have been proposed as potential circulating factors such as soluble urokinase-type plasminogen activator receptor (suPAR) and cardiolipin-like-cytokine 1 (CLC-1). Many studies have also attempted to establish which molecules are related to podocyte injury in the pathogenesis of FSGS such as plasminogen activator inhibitor type-1 (PAI-1), angiotensin II type 1 receptors (AT1R), dystroglycan(DG), microRNAs, metalloproteinases (MMPs), forkheadbox P3 (FOXP3), and poly-ADP-ribose polymerase-1 (PARP1). Some biomarkers have also been studied in the context of kidney tissue damage progression: transforming growth factor-beta (TGF-ß), human neutrophil gelatinase-associated lipocalin (NGAL), malondialdehyde (MDA), and others. This paper describes molecules that could potentially be considered as circulating factors causing primary FSGS.

2.
Polim Med ; 49(2): 67-70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32544311

RESUMEN

Free light chains accumulation is the reason of kidney injury in patients with multiple myeloma. The removal of free light chains can improve patients prognosis and survival, and in some cases allows for dialysotherapy discontinuation. Unfortunately, conventional dialysis is not effective enough in terms of free light chains removal. New high cut-off (HCO) techniques remove free light chains more effectively than conventional dialysis. In some cases, this technique may turn out better than hemodiafiltration. However, there are some differences between specific techniques in the removal of kappa and lambda light chains. Lambda light chains are better removed by polymethyl methacrylate membranes with a change of filter during dialysis. Kappa light chains are thoroughly removed by polymethyl methacrylate membranes and HCO (35,000 Da) polysulfone membranes. Unfortunately, it is very difficult to differentiate between the effect of HCO dialysis therapy and concomitant chemotherapy because some of the data is not fully conclusive. Using the proper technique for an individual patient may give optimally effective treatment results.


Asunto(s)
Hemodiafiltración , Enfermedades Renales , Mieloma Múltiple , Diálisis Renal , Humanos , Cadenas Ligeras de Inmunoglobulina , Enfermedades Renales/etiología , Enfermedades Renales/terapia , Mieloma Múltiple/complicaciones , Mieloma Múltiple/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA