Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 213
1.
BMJ Paediatr Open ; 8(1)2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844386

BACKGROUND: Early-onset neonatal sepsis (EONS) remains an important disease entity due to very serious adverse outcomes if left untreated. Lack of diagnostic tools in identifying healthy from diseased neonates, and clinicians' fear of the missing positive-culture sepsis babies, or babies with clinical sepsis have led to overtreating and unnecessary antibiotic exposure. Kaiser Permanente EONS risk calculator is an internally validated tool that can predict EONS. This sepsis risk calculator (SRC) classifies neonates into three subgroups: (1) ill-appearing, (2) equivocal and (3) well-appearing. We propose a modification to this tool that aims to use it solely for well-appearing babies. This modification represents a more conservative approach to decrease antibiotic exposure and offers an alternative for those hesitant to fully implement this tool. METHODS: This is a dual-centre retrospective study where data were extracted from the electronic medical records. Our primary outcome was to validate the modified use of the SRC with a two-by-two table. Specificity, negative predictive value and expected antibiotic reduction were used to evaluate the tool's feasibility. RESULT: Among 770 babies suspected of EONS, the feasibility of the modified use was tested. The expected antibiotic exposure reduction rate on the modification was 40.4% overall. The proposed modification resulted in a specificity and negative predictive value of 99.28% (95% CI: 97.92% to 99.85%) and 99.5% (95% CI: 99% to 99.8%), respectively. CONCLUSION: The modified use of the sepsis risk calculator has shown that it can safely reduce antibiotic exposure in well-appearing babies. The modified use is used as a 'rule out' test that can identify very low risk of EONS babies, and safely minimise antibiotic exposure. Further prospective studies are needed to examine the efficacy of this use, and quality improvement projects are required to evaluate its applicability in different clinical settings.


Anti-Bacterial Agents , Neonatal Sepsis , Humans , Retrospective Studies , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Infant, Newborn , Risk Assessment , Neonatal Sepsis/diagnosis , Neonatal Sepsis/prevention & control , Female , Male
2.
FASEB J ; 38(11): e23734, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38847486

The cell cycle is tightly regulated to ensure controlled cell proliferation. Dysregulation of the cell cycle machinery is a hallmark of cancer that leads to unchecked growth. This review comprehensively analyzes key molecular regulators of the cell cycle and how they contribute to carcinogenesis when mutated or overexpressed. It focuses on cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, checkpoint kinases, and mitotic regulators as therapeutic targets. Promising strategies include CDK4/6 inhibitors like palbociclib, ribociclib, and abemaciclib for breast cancer treatment. Other possible targets include the anaphase-promoting complex/cyclosome (APC/C), Skp2, p21, and aurora kinase inhibitors. However, challenges with resistance have limited clinical successes so far. Future efforts should focus on combinatorial therapies, next-generation inhibitors, and biomarkers for patient selection. Targeting the cell cycle holds promise but further optimization is necessary to fully exploit it as an anti-cancer strategy across diverse malignancies.


Cell Cycle , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Animals , Molecular Targeted Therapy/methods
3.
Curr Atheroscler Rep ; 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38869707

PURPOSE OF REVIEW: To eradicate atherosclerotic diseases, novel biomarkers, and future therapy targets must reveal the burden of early atherosclerosis (AS), which occurs before life-threatening unstable plaques form. The chemical and biological features of microRNAs (miRNAs) make them interesting biomarkers for numerous diseases. We summarized the latest research on miRNA regulatory mechanisms in AS progression studies, which may help us use miRNAs as biomarkers and treatments for difficult-to-treat diseases. RECENT FINDINGS: Recent research has demonstrated that miRNAs have a regulatory function in the observed changes in gene and protein expression during atherogenesis, the process that leads to atherosclerosis. Several miRNAs play a role in the development of atherosclerosis, and these miRNAs could potentially serve as non-invasive biomarkers for atherosclerosis in various regions of the body. These miRNAs have the potential to serve as biomarkers and targets for early treatment of atherosclerosis. The start and development of AS require different miRNAs. It reviews new research on miRNAs affecting endothelium, vascular smooth muscle, vascular inflammation, lipid retention, and cholesterol metabolism in AS. A miRNA gene expression profile circulates with AS everywhere. AS therapies include lipid metabolism, inflammation reduction, and oxidative stress inhibition. Clinical use of miRNAs requires tremendous progress. We think tiny miRNAs can enable personalized treatment.

4.
Life Sci ; 351: 122791, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38848936

Sorafenib is a multikinase inhibitor employed for managing hepatocellular carcinoma (HCC). The emergence of sorafenib resistance presents an obstacle to its therapeutic efficacy. One notable approach to overcoming sorafenib resistance is the exploration of combination therapies. The role of hedgehog signaling in sorafenib resistance has been also examined in HCC. R51211, known as itraconazole, has been safely employed in clinical practice. Through in vitro and in vivo investigations, we assessed the potential of R51211 to enhance the therapeutic efficacy of sorafenib by inhibiting the hedgehog signaling. The zero-interaction potency synergy model demonstrated a synergistic interaction between R51211 and sorafenib, a phenomenon reversed by the action of a smoothened receptor agonist. This dual therapy exhibited an increased capacity to induce apoptosis, as evidenced by alterations in the Bax/BCL-2 ratio and caspase-3, along with a propensity to promote autophagy, as indicated by changes in BECN1, p62, and the LC3I/LC3II ratio. Furthermore, the combination therapy resulted in significant reductions in biomarkers associated with liver preneoplastic alterations, improved liver microstructure, and mitigated changes in liver function enzymes. The substantial decrease in hedgehog components (Shh, SMO, GLI1, and GLI2) following R51211 treatment appears to be a key factor contributing to the increased efficacy of sorafenib. In conclusion, our study highlights the potential of R51211 as an adjunct to sorafenib, introducing a new dimension to this combination therapy through the modulation of the hedgehog signaling pathway. Further investigations are essential to validate the therapeutic efficacy of this combined approach in inhibiting the development of liver cancer.

5.
Ann Med Surg (Lond) ; 86(5): 2562-2571, 2024 May.
Article En | MEDLINE | ID: mdl-38694302

Background: Increased COVID-19 transmission among the populace may be caused by healthcare workers (HCWs) who lack knowledge, awareness, and good preventive practices. Additionally, it may cause elevated stress levels, anxiety, poor medical judgement, and situational overestimation. Objectives: The present survey aimed to assess knowledge and risk perception regarding COVID-19 among HCWs in Khyber Pakhtunkhwa (KP), Pakistan. Methodology: A web-based online, pre-tested questionnaire comprising 26 items was circulated via social media in April 2020 amongst HCWs in major tertiary care facilities in KP. Results: The study's results, revealing both the commendable knowledge levels among HCWs about COVID-19 and their heightened risk perception, highlight the critical need for targeted interventions to address the potential impact on self-protective behaviour and mental health within this vital workforce. This insight is important for designing strategies that not only enhance HCWs' well-being but also ensure the continued effectiveness of healthcare delivery during pandemics. The percentage mean score (PMS) of COVID-19 knowledge was 85.14±10.82. Male HCWs and those with an age older than or equal to 32 years demonstrated a higher knowledge score (85.62±11.08; P=0.032 and 87.59±7.33, P=0.021, respectively). About 76% of HCWs feared contracting COVID-19. Nearly 82% of respondents were mentally preoccupied with the pandemic and also terrified of it. 'Of these, 81% were nurses, 87% had a job experience of 6-8 years and 54.45% were frontline workers. Feelings of panic and concern about the pandemic were found to be more in HCWs who were physicians above the age of 32, and who had 3-5 years of work experience. HCWs' overall risk perception was found to be significantly different between males (7.04±2.26) and females (8.01±1.97), job experience of 6-10 years (8.04±177) with 3-5 years and younger than or equal to 2 years job experience (7.18±2.43,6.93±2.22), respectively, and between frontline HCWs (7.50±2.10) and non-frontline HCWs (6.84±2.40). Conclusion: HCWs demonstrated good knowledge about COVID-19. As the risk perception of COVID-19 among HCWs is high, it can raise concerns about their self-protective behaviour, and mental health. These issues need to be addressed.

6.
Front Cell Neurosci ; 18: 1336145, 2024.
Article En | MEDLINE | ID: mdl-38699177

The orexins, also referred to as hypocretins, are neuropeptides that originate from the lateral hypothalamus (LH) region of the brain. They are composed of two small peptides, orexin-A, and orexin-B, which are broadly distributed throughout the central and peripheral nervous systems. Orexins are recognized to regulate diverse functions, involving energy homeostasis, the sleep-wake cycle, stress responses, and reward-seeking behaviors. Additionally, it is suggested that orexin-A deficiency is linked to sleepiness and narcolepsy. The orexins bind to their respective receptors, the orexin receptor type 1 (OX1R) and type 2 (OX2R), and activate different signaling pathways, which results in the mediation of various physiological functions. Orexin receptors are widely expressed in different parts of the body, including the skin, muscles, lungs, and bone marrow. The expression levels of orexins and their receptors play a crucial role in apoptosis, which makes them a potential target for clinical treatment of various disorders. This article delves into the significance of orexins and orexin receptors in the process of apoptosis, highlighting their expression levels and their potential contributions to different diseases. The article offers an overview of the existing understanding of the orexin/receptor system and how it influences the regulation of apoptosis.

7.
Clin Case Rep ; 12(6): e8972, 2024 Jun.
Article En | MEDLINE | ID: mdl-38799526

Key Clinical Message: Immunosuppression from B-acute lymphoblastic leukemia (B-ALL) chemotherapy and a preceding COVID-19 infection may predispose patients to rare complications such as rhino-orbital mucormycosis. Hence, a high index of suspicion should be maintained by physicians (and oncologists) if patients undergoing B-ALL treatment present with orofacial symptoms and ophthalmological manifestations such as peri-orbital swelling, ophthalmoplegia, and loss of vision, suggestive of infection. Abstract: Mucormycosis is a severe fungal infection that poses significant mortality and morbidity risks, particularly in immunocompromised individuals. We present a rare case of a 16-year-old patient with rhino-orbital mucormycosis following B-acute lymphoblastic leukemia (B-ALL) treatment and concurrent COVID-19 infection. We describe the clinical presentation, diagnosis, treatment, and outcome of this patient, and discuss the possible interactions and implications of these three conditions. A young 16-year-old male patient without significant clinical history was admitted with complaints of low-grade intermittent fever, fatigue, malaise, restlessness, and unexplained weight loss for the past 2 months. A bone marrow biopsy confirmed the diagnosis of B-ALL. Following the diagnosis of B-ALL, the patient underwent initiation of chemotherapy. Following the initial two cycles of chemotherapy, the patient experienced fever and cough and tested positive for COVID-19 infection. Nearly a week later, the patient presented to the chemotherapy emergency department with a clinical picture characterized by a fever up to 39°C associated with left facial swelling, severe headache, purulent rhinorrhea, and foreign body sensation in the ipsilateral nostril. The following day, erythema and left eyelid edema were observed, with ocular opening limitation. The diagnosis was confirmed based on the positive result of polymerase chain reaction for left-sided mucormycosis. Initial administration of liposomal and lipid amphotericin B at 1-1.5 mg/kg/d doses for 4-6 weeks was followed by surgical debridement of necrotic tissue on the left side of the face and nose. Subsequent ophthalmological examinations showed normal conditions of the left eye. The case underscores the importance of heightened clinical suspicion, early diagnosis through imaging and molecular techniques, aggressive multimodal therapy, and close interdisciplinary collaboration for improved outcomes in such rare and challenging clinical scenarios.

8.
Int J Infect Dis ; : 107111, 2024 May 25.
Article En | MEDLINE | ID: mdl-38801970

OBJECTIVES: This study aimed to compare antibody trajectories among individuals with SARS-CoV-2 hybrid and vaccine-induced immunity. METHODS: Danish adults receiving three doses of BTN162b2 or mRNA-1237 were included prior to first vaccination (Day0). SARS-CoV-2 anti-spike IgG levels were assessed before each vaccine dose, at Day90, Day180, 28 days after 3rd vaccination (Day251), Day365, and prior to 4th vaccination (Day535). SARS-CoV-2 PCR results were extracted from the national microbiology database. Mixed-effect multivariable linear regression investigated the impact of hybrid-immunity (stratified into 4 groups: no hybrid immunity, PCR+ prior to 3rd dose, PCR+ after 3rd dose and before Day365, PCR+ after Day365) on anti-spike IgG trajectories. RESULTS: 4,936 individuals were included, 47% developed hybrid-immunity. Anti-spike IgG increases were observed in all groups at Day251, with the highest levels in those PCR+ prior to 3rd dose (Geometric Mean; 535,647AU/mL vs. 374,665AU/mL with no hybrid-immunity, p=<0.0001). Further increases were observed in participants who developed hybrid immunity after their 3rd dose. Anti-spike IgG levels declined from Day 251-535 in individuals without hybrid-immunity and in those who developed hybrid-immunity prior to their 3rd dose, with lower rate of decline in those with hybrid-immunity. CONCLUSION: Hybrid-immunity results in higher and more durable antibody trajectories in vaccinated individuals.

9.
Pharmaceuticals (Basel) ; 17(5)2024 May 10.
Article En | MEDLINE | ID: mdl-38794184

The aqueous extract of Annona muricata L. leaves was thoroughly analyzed using the UPLC-MS/MS, in addition to a new approach of examination of the extract's impact on cancer of EAC(Ehrlich ascites carcinoma) in albino male mice. The aim was to investigate the diversity of the phytochemical constituents of the aqueous leaf capsule extract and their impacts on EAC as anticancer agents. The UPLC-ESI-MS/MS screening resulted in 410 tentatively identified metabolites. Among them, 384 compounds were tentatively identified in a previous study, besides a number of 26 compounds belonging to acetogenins, phenolics, flavonoids, alkaloids, and other miscellaneous compounds, which were exclusively identified in the aqueous extract of the leaf capsule. Interestingly, a new compound was tentatively characterized as galloyl-quinic acid-rutinoside. This study also demonstrated that treating EAC mice with an extract from A. muricata leaves significantly improved the abnormalities in the expression of pro-apoptotic (Bax and caspase-3) and anti-apoptotic (Bcl-2) genes. Furthermore, the extract showed good protection against induced Ehrlich hepatocarcinoma, according to the microscopical, histological, and immune-histochemical analyses of the liver tissues and tumor mass.

10.
Front Pharmacol ; 15: 1377980, 2024.
Article En | MEDLINE | ID: mdl-38808257

Liver fibrosis is a disease with a great global health and economic burden. Existing data highlights itraconazole (ITRCZ) as a potentially effective anti-fibrotic therapy. However, ITRCZ effect is hindered by several limitations, such as poor solubility and bioavailability. This study aimed to formulate and optimize chitosan nanoparticles (Cht NPs) loaded with ITRCZ as a new strategy for managing liver fibrosis. ITRCZ-Cht NPs were optimized utilizing a developed 22 full factorial design. The optimized formula (F3) underwent comprehensive in vitro and in vivo characterization. In vitro assessments revealed that F3 exhibited an entrapment efficiency of 89.65% ± 0.57%, a 169.6 ± 1.77 nm particle size, and a zeta potential of +15.93 ± 0.21 mV. Furthermore, in vitro release studies indicated that the release of ITRCZ from F3 adhered closely to the first-order model, demonstrating a significant enhancement (p-value < 0.05) in cumulative release compared to plain ITRCZ suspension. This formula increased primary hepatocyte survival and decreased LDH activity in vitro. The in vivo evaluation of F3 in a rat model of liver fibrosis revealed improved liver function and structure. ITRCZ-Cht NPs displayed potent antifibrotic effects as revealed by the downregulation of TGF-ß, PDGF-BB, and TIMP-1 as well as decreased hydroxyproline content and α-SMA immunoexpression. Anti-inflammatory potential was evident by reduced TNF-α and p65 nuclear translocation. These effects were likely ascribed to the modulation of Hedgehog components SMO, GLI1, and GLI2. These findings theorize ITRCZ-Cht NPs as a promising formulation for treating liver fibrosis. However, further investigations are deemed necessary.

11.
Eur J Pharm Sci ; 198: 106792, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38714237

Non-alcoholic steatohepatitis (NASH) is characterized by liver inflammation, fat accumulation, and collagen deposition. Due to the limited availability of effective treatments, there is a pressing need to develop innovative strategies. Given the complex nature of the disease, employing combination approaches is essential. Hedgehog signaling has been recognized as potentially promoting NASH, and cholesterol can influence this signaling by modifying the conformation of PTCH1 and SMO activity. HSP90 plays a role in the stability of SMO and GLI proteins. We revealed significant positive correlations between Hedgehog signaling proteins (Shh, SMO, GLI1, and GLI2) and both cholesterol and HSP90 levels. Herein, we investigated the novel combination of the cholesterol-lowering agent lovastatin and the HSP90 inhibitor PU-H71 in vitro and in vivo. The combination demonstrated a synergy score of 15.09 and an MSA score of 22.85, as estimated by the ZIP synergy model based on growth inhibition rates in HepG2 cells. In a NASH rat model induced by thioacetamide and a high-fat diet, this combination therapy extended survival, improved liver function and histology, and enhanced antioxidant defense. Additionally, the combination exhibited anti-inflammatory and anti-fibrotic potential by influencing the levels of TNF-α, TGF-ß, TIMP-1, and PDGF-BB. This effect was evident in the suppression of the Col1a1 gene expression and the levels of hydroxyproline and α-SMA. These favorable outcomes may be attributed to the combination's potential to inhibit key Hedgehog signaling molecules. In conclusion, exploring the applicability of this combination contributes to a more comprehensive understanding and improved management of NASH and other fibrotic disorders.


HSP90 Heat-Shock Proteins , Hedgehog Proteins , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Non-alcoholic Fatty Liver Disease , Signal Transduction , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Hedgehog Proteins/metabolism , Hedgehog Proteins/antagonists & inhibitors , Signal Transduction/drug effects , Male , Humans , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hep G2 Cells , Diet, High-Fat/adverse effects , Liver/drug effects , Liver/metabolism , Drug Therapy, Combination , Rats , Rats, Sprague-Dawley , Cholesterol/metabolism
12.
Sci Rep ; 14(1): 11673, 2024 05 22.
Article En | MEDLINE | ID: mdl-38778037

Designing machines and equipment for post-harvest operations of agricultural products requires information about their physical properties. The aim of the work was to evaluate the possibility of introducing a new approach to predict the moisture content in bean and corn seeds based on measuring their dimensions using image analysis using artificial neural networks (ANN). Experimental tests were carried out at three levels of wet basis moisture content of seeds: 9, 13 and 17%. The analysis of the results showed a direct relationship between the wet basis moisture content and the main dimensions of the seeds. Based on the statistical analysis of the seed material, it was shown that the characteristics examined have a normal or close to normal distribution, and the seed material used in the investigation is representative. Furthermore, the use of artificial neural networks to predict the wet basis moisture content of seeds based on changes in their dimensions has an efficiency of 82%. The results obtained from the method used in this work are very promising for predicting the moisture content.


Neural Networks, Computer , Seeds , Water , Zea mays , Seeds/chemistry , Water/chemistry , Zea mays/chemistry , Image Processing, Computer-Assisted/methods , Edible Grain/chemistry
13.
Heliyon ; 10(8): e29379, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38644814

Psidium cattleianum Sabine (strawberry guava) is an evergreen shrub that is grown as a fruiting hedge and has received significant consideration in the food and pharmaceutical disciplines. This study aims to set a promising protocol for in vitro propagation of P. cattleianum, along with profiling the phenolic content of the original plant (OP), induced callus (IC), and regenerated plantlets (RP) extracts, ultimately, evaluating their anti-inflammatory, antioxidant, and anticancer potential. Seeds were treated with commercial bleaching, HCl, and H2O2 to enhance the germination percentage and minimize the contamination percentage. Culturing sterilized leaf explants onto Murashige and Skoog (MS) medium supplemented with benzyl adenine (BA), 2,4-dichloro phenoxy acetic acid, and kinetin showed the best callus induction, while supplementation of MS media with BA, adenine sulfate, naphthalene acetic acid, and gibberellic acid activated regeneration. Augmentation of MS media with indol-3-butyric acid recorded the maximum rooting percentage. Finally, the obtained rooted shoots were successfully acclimatized in sand and peat moss soil. HPLC-MS/MS profiles of OP, RP, and IC showed a variety of phenolic metabolites. IC extract decreased the viability of MCF-7, HepG2, and K-562 cancer cell lines. Also, OP exhibits strong antioxidant activity. P. cattleianum and its RP are profound sources of phenolic compounds promoted for promising applications in the food and pharmaceutical industries.

14.
Parasite Epidemiol Control ; 25: e00346, 2024 May.
Article En | MEDLINE | ID: mdl-38617199

Objectives: This study intends to evaluate the prevalence of active Schistosomiasis in school children, as well as their awareness, attitude, and behavior towards the illness in El-Rahad province. Methods: This facility-based analytical cross-sectional study among 495 primary school children aged seven to 13 in five villages; Structured and pre-tested questionnaires were used to collect the data in face-to-face interviews, in addition, urine samples were collected from each pupil and then assessed microscopically for S. Haematobium eggs Presence. Data was analyzed using SPSS version 25.0. Results: A total of 424 primary school students participated in the study. Almost all the students (96%) had poor knowledge about urinary schistosomiasis. In general, 100% of the students had poor practices. Attitude revealed that females have lower chance of having the infection than their male counterparts. About 27% (n = 115) of them had active urinary schistosomiasis infection at the time of the study. Conclusion: The study revealed poor level of awareness and knowledge, positive attitude, and poor practices among primary school students. There was also high level of active infection among participants.

15.
J Pharm Health Care Sci ; 10(1): 17, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594773

BACKGROUND: Methotrexate (MTX) is an antineoplastic/immunosuppressive drug, whose clinical use is impeded owing to its serious adverse effects; one of which is acute kidney injury (AKI). Most of MTX complications emerged from the provoked pro-oxidant-, pro-inflammatory- and pro-apoptotic effects. Quillaja saponaria bark saponin (QBS) is a bioactive triterpene that has been traditionally used as an antitussive, anti-inflammatory supplement, and to boost the immune system due to its potent antioxidant- and anti-inflammatory activities. However, the protective/therapeutic potential of QBS against AKI has not been previously evaluated. This study aimed to assess the modulatory effect of QBS on MTX-induced reno-toxicity. METHODS: Thirty-two male rats were divided into 4-groups. Control rats received oral saline (group-I). In group-II, rats administered QBS orally for 10-days. In group-III, rats were injected with single i.p. MTX (20 mg/kg) on day-5. Rats in group-IV received QBS and MTX. Serum BUN/creatinine levels were measured, as kidney-damage-indicating biomarkers. Renal malondialdehyde (MDA), reduced-glutathione (GSH) and nitric-oxide (NOx) were determined, as oxidative-stress indices. Renal expression of TNF-α protein and Nrf-2/Keap-1 mRNAs were evaluated as regulators of inflammation. Renal Bcl-2/cleaved caspase-3 immunoreactivities were evaluated as apoptosis indicators. RESULTS: Exaggerated kidney injury upon MTX treatment was evidenced histologically and biochemically. QBS attenuated MTX-mediated renal degeneration, oxidant-burden enhancement, excessive inflammation, and proapoptotic induction. Histopathological analysis further confirmed the reno-protective microenvironment rendered by QBS. CONCLUSIONS: In conclusion, our results suggest the prophylactic and/or therapeutic effects of QBS in treating MTX-induced AKI. Such reno-protection is most-likely mediated via Nrf-2 induction that interferes with oxidant load, inflammatory pathways, and proapoptotic signaling.

16.
Toxicol Appl Pharmacol ; 486: 116943, 2024 May.
Article En | MEDLINE | ID: mdl-38677600

Ulcerative colitis (UC) is an inflammatory condition that affects the colon's lining and increases the risk of colon cancer. Despite ongoing research, there is no identified cure for UC. The recognition of NLRP3 inflammasome activation in the pathogenesis of UC has gained widespread acceptance. Notably, the ketone body ß-hydroxybutyrate inhibits NLRP3 demonstrating its anti-inflammatory properties. Additionally, BD-AcAc 2 is ketone mono ester that increases ß-hydroxybutyrate blood levels. It has the potential to address the constraints associated with exogenous ß-hydroxybutyrate as a therapeutic agent, including issues related to stability and short duration of action. However, the effects of ß-hydroxybutyrate and BD-AcAc 2 on colitis have not been fully investigated. This study found that while both exogenous ß-hydroxybutyrate and BD-AcAc 2 produced the same levels of plasma ß-hydroxybutyrate, BD-AcAc 2 demonstrated superior effectiveness in mitigating dextran sodium sulfate-induced UC in rats. The mechanism of action involves modulating the NF-κB signaling, inhibiting the NLRP3 inflammasome, regulating antioxidant capacity, controlling tight junction protein expression and a potential to inhibit apoptosis and pyroptosis. Certainly, BD-AcAc 2's anti-inflammatory effects require more than just increasing plasma ß-hydroxybutyrate levels and other factors contribute to its efficacy. Local ketone concentrations in the gastrointestinal tract, as well as the combined effect of specific ketone bodies, are likely to have contributed to the stronger protective effect observed with ketone mono ester ingestion in our experiment. As a result, further investigations are necessary to fully understand the mechanisms of BD-AcAc 2 and optimize its use.


3-Hydroxybutyric Acid , Colitis, Ulcerative , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , 3-Hydroxybutyric Acid/pharmacology , Rats , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammasomes/metabolism , Inflammasomes/drug effects , Dextran Sulfate/toxicity , Colon/drug effects , Colon/pathology , Colon/metabolism , NF-kappa B/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Ketones/pharmacology
17.
Life Sci ; 347: 122642, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38641047

Drug repurposing involves the investigation of existing drugs for new indications. It offers a great opportunity to quickly identify a new drug candidate at a lower cost than novel discovery and development. Despite the importance and potential role of drug repurposing, there is no specific definition that healthcare providers and the World Health Organization credit. Unfortunately, many similar and interchangeable concepts are being used in the literature, making it difficult to collect and analyze uniform data on repurposed drugs. This research was conducted based on understanding general criteria for drug repurposing, concentrating on liver diseases. Many drugs have been investigated for their effect on liver diseases even though they were originally approved (or on their way to being approved) for other diseases. Some of the hypotheses for drug repurposing were first captured from the literature and then processed further to test the hypothesis. Recently, with the revolution in bioinformatics techniques, scientists have started to use drug libraries and computer systems that can analyze hundreds of drugs to give a short list of candidates to be analyzed pharmacologically. However, this study revealed that drug repurposing is a potential aid that may help deal with liver diseases. It provides available or under-investigated drugs that could help treat hepatitis, liver cirrhosis, Wilson disease, liver cancer, and fatty liver. However, many further studies are needed to ensure the efficacy of these drugs on a large scale.


Drug Repositioning , Liver Diseases , Drug Repositioning/methods , Humans , Liver Diseases/drug therapy , Computational Biology/methods , Drug Discovery/methods
18.
Int J Biol Macromol ; 268(Pt 2): 131814, 2024 May.
Article En | MEDLINE | ID: mdl-38677679

Epigenetic processes, including non-coding RNA, histone modifications, and DNA methylation, play a vital role in connecting the environment to the development of a disorder, especially when there is a favorable genetic background. Ankylosing Spondylitis (AS) is a chronic type of spinal arthritis that highlights the significance of epigenetics in diseases related to autoimmunity and inflammation. MicroRNAs (miRNAs) are small non-coding RNAs that are involved in both normal and aberrant pathological and physiological gene expression. This study focuses on the pathophysiological pathways to clarify the role of miRNAs in AS. We have conducted a thorough investigation of the involvement of miRNAs in several processes, including inflammation, the production of new bone, T-cell activity, and the regulation of pathways such as BMP, Wnt, and TGFß signaling. Undoubtedly, miRNAs play a crucial role in enhancing our comprehension of the pathophysiology of AS, and their promise as a therapeutic strategy is quickly expanding.


Biomarkers , Epigenesis, Genetic , MicroRNAs , Spondylitis, Ankylosing , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/diagnosis , Spondylitis, Ankylosing/immunology , Humans , MicroRNAs/genetics , Gene Expression Regulation , Animals , Signal Transduction
19.
Ann Nucl Med ; 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38676905

OBJECTIVE: The study aims to assess regional and total bone metabolic activity in patients with chronic kidney disease using Na[18F]F PET and correlation between semi-quantitative indices and blood parameters. METHODS: Seventy-two subjects (mean age 61.8 ± 13.8 years) were included. Of these 24/72 patients had end-stage renal disease (ESRD) (GFR < 15 mL/min/1.73 m2), 38/72 had chronic kidney disease (CKD) (GFR between 60 and 15 mL/min/1.73 m2), and 10/72 were controls with normal renal function. All subjects underwent Na[18F]F PET-CT with a dose activity of 0.06 mCi/Kg. Regional and total skeletal metabolism were assessed with mean SUVs in a skeletal volume of interest (VOI), bone to soft tissue index (B/S), global SUV mean (GSUV mean) of the whole bone, and uptake in the femoral neck. RESULTS: Statistically significant differences were observed in a number of 18F-NaF metrics like femoral neck metabolism in CKD and ERSD groups in comparison to control in right (P = 0.003) and left femur (P = 0.006), bone to soft tissue index in the femur (P = 0.016) and GSUV5 (P = 0.006). There is also a significant difference in SUV mean in lumbar vertebrae (L1-L4) among CKD, ESRD, and controls. There was a moderate correlation between 18F-NaF PET scan uptake and blood parameters such as ALP and PTH. Na[18F]F uptake parameters were significantly different in low versus high bone turnover state. CONCLUSIONS: The assessment of total skeleton and regional metabolism and bone turnover in CKD patients is feasible with Na[18F]F PET. Na[18F]F can help to detect early changes in bone metabolism and assess the progression of bone disease in this complex condition. Quantification with Na[18F]F PET might provide better assessment of the bone turnover. The difference in Na[18F]F uptake in CKD compared to controls is likely related to a change in bone turnover which, however, requires further validation.

...