Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol ; 210(12): 1974-1989, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37163338

RESUMEN

The gasdermins are a family of pore-forming proteins that has recently been suggested to play a central role in pyroptosis. In this study, we describe the novel roles of gasdermins in the biogenesis of apoptotic cell-derived exosomes. In apoptotic human HeLa and HEK293 cells, GSDMA, GSDMC, GSDMD, and GSDME increased the release of apoptotic exosomes. GSDMB and DFNB59, in contrast, negatively affected the release of apoptotic exosomes. GSDME at its full-length and cleaved forms was localized in the exosomes and exosomal membrane. Full-length and cleaved forms of GSDME are suggested to increase Ca2+ influx to the cytosol through endosomal pores and thus increase the biogenesis of apoptotic exosomes. In addition, the GSDME-mediated biogenesis of apoptotic exosomes depended on the ESCRT-III complex and endosomal recruitment of Ca2+-dependent proteins, that is, annexins A2 and A7, the PEF domain family proteins sorcin and grancalcin, and the Bro1 domain protein HD-PTP. Therefore, we propose that the biogenesis of apoptotic exosomes begins when gasdermin-mediated endosomal pores increase cytosolic Ca2+, continues through the recruitment of annexin-sorcin/grancalcin-HD-PTP, and is completed when the ESCRT-III complex synthesizes intraluminal vesicles in the multivesicular bodies of dying cells. Finally, we found that GSDME-bearing tumors released apoptotic exosomes to induce inflammatory responses in the in vivo mouse 4T1 orthotropic model of BALB/c breast cancer. The data indicate that the switch from apoptosis to pyroptosis could drive the transfer of mass signals to nearby or distant living cells and tissues by way of extracellular vesicles, and that gasdermins play critical roles in that process.

2.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36232549

RESUMEN

The COVID-19 pandemic has had a deep impact on people worldwide since late 2019 when SARS-CoV-2 was first identified in Wuhan, China. In addition to its effect on public health, it has affected humans in various aspects of life, including social, economic, cultural, and political. It is also true that researchers have made vigorous efforts to overcome COVID-19 throughout the world, but they still have a long way to go. Accordingly, innumerable therapeutics and vaccine candidates have been studied for their efficacies and have been tried clinically in a very short span of time. For example, the versatility of extracellular vesicles, which are membrane-bound particles released from all types of cells, have recently been highlighted in terms of their effectiveness, biocompatibility, and safety in the fight against COVID-19. Thus, here, we tried to explain the use of extracellular vesicles as therapeutics and for the development of vaccines against COVID-19. Along with the mechanisms and a comprehensive background of their application in trapping the coronavirus or controlling the cytokine storm, we also discuss the obstacles to the clinical use of extracellular vesicles and how these could be resolved in the future.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Vacunas Virales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Pandemias/prevención & control , SARS-CoV-2
3.
Clin Dysmorphol ; 29(4): 173-176, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32858544

RESUMEN

Disorders of steroid synthesis are a group of anomalies caused by defects in any step of conversion of cholesterol into steroid hormones. The disorders are characterized by defects leading to abnormalities of salt-water balance and/or sexual differentiation. Congenital lipoid adrenal hyperplasia (CLAH) is the most severe form of steroid synthesis disorder caused by the accumulation of cholesterol in the outer mitochondrial membrane due to steroidogenic acute regulatory protein (StAR) deficiency. Pathogenic sequence variants in the gene STAR encoding StAR protein leads to CLAH. In the present study, a Pakistani family was clinically diagnosed with the LAH phenotype. Sanger sequencing of STAR in the family revealed a novel homozygous nonsense mutation [c.295G>T, p.(Glu99*)] in the living affected individual. The study was designed to assist in carrier testing and prenatal diagnosis within the affected family. In addition, searching for common variants in the STAR gene would help in designing low-cost targeted variation testing in other patients.


Asunto(s)
Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/genética , Trastorno del Desarrollo Sexual 46,XY/diagnóstico , Trastorno del Desarrollo Sexual 46,XY/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Fenotipo , Biomarcadores , Bandeo Cromosómico , Consanguinidad , Femenino , Estudios de Asociación Genética/métodos , Homocigoto , Humanos , Patrón de Herencia , Cariotipo , Proteínas de Transporte de Membrana/genética , Mutación , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...