Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 67
1.
Cells ; 13(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38667317

Analysis of blood-based indicators of brain health could provide an understanding of early disease mechanisms and pinpoint possible intervention strategies. By examining lipid profiles in extracellular vesicles (EVs), secreted particles from all cells, including astrocytes and neurons, and circulating in clinical samples, important insights regarding the brain's composition can be gained. Herein, a targeted lipidomic analysis was carried out in EVs derived from plasma samples after removal of lipoproteins from individuals with Alzheimer's disease (AD) and healthy controls. Differences were observed for selected lipid species of glycerolipids (GLs), glycerophospholipids (GPLs), lysophospholipids (LPLs) and sphingolipids (SLs) across three distinct EV subpopulations (all-cell origin, derived by immunocapture of CD9, CD81 and CD63; neuronal origin, derived by immunocapture of L1CAM; and astrocytic origin, derived by immunocapture of GLAST). The findings provide new insights into the lipid composition of EVs isolated from plasma samples regarding specific lipid families (MG, DG, Cer, PA, PC, PE, PI, LPI, LPE, LPC), as well as differences between AD and control individuals. This study emphasizes the crucial role of plasma EV lipidomics analysis as a comprehensive approach for identifying biomarkers and biological targets in AD and related disorders, facilitating early diagnosis and potentially informing novel interventions.


Alzheimer Disease , Extracellular Vesicles , Lipidomics , Humans , Alzheimer Disease/blood , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Extracellular Vesicles/metabolism , Lipidomics/methods , Female , Male , Aged , Lipids/blood , Case-Control Studies , Aged, 80 and over , Biomarkers/blood , Biomarkers/metabolism , Astrocytes/metabolism , Middle Aged
2.
Transl Neurodegener ; 12(1): 56, 2023 12 04.
Article En | MEDLINE | ID: mdl-38049923

BACKGROUND: Cognitive decline in Alzheimer's disease (AD) is associated with hyperphosphorylated tau (pTau) propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EVs). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2 (nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that human tau expression elevates brain ceramides and nSMase2 activity. METHODS: To determine the therapeutic benefit of inhibiting this elevation, we evaluated PDDC, the first potent, selective, orally bioavailable, and brain-penetrable nSMase2 inhibitor in the transgenic PS19 AD mouse model. Additionally, we directly evaluated the effect of PDDC on tau propagation in a mouse model where an adeno-associated virus (AAV) encoding P301L/S320F double mutant human tau was stereotaxically-injected unilaterally into the hippocampus. The contralateral transfer of the double mutant human tau to the dentate gyrus was monitored. We examined ceramide levels, histopathological changes, and pTau content within EVs isolated from the mouse plasma. RESULTS: Similar to human AD, the PS19 mice exhibited increased brain ceramide levels and nSMase2 activity; both were completely normalized by PDDC treatment. The PS19 mice also exhibited elevated tau immunostaining, thinning of hippocampal neuronal cell layers, increased mossy fiber synaptophysin immunostaining, and glial activation, all of which were pathologic features of human AD. PDDC treatment reduced these changes. The plasma of PDDC-treated PS19 mice had reduced levels of neuronal- and microglial-derived EVs, the former carrying lower pTau levels, compared to untreated mice. In the tau propagation model, PDDC normalized the tau-induced increase in brain ceramides and significantly reduced the amount of tau propagation to the contralateral side. CONCLUSIONS: PDDC is a first-in-class therapeutic candidate that normalizes elevated brain ceramides and nSMase2 activity, leading to the slowing of tau spread in AD mice.


Alzheimer Disease , Animals , Humans , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Ceramides/metabolism , Mice, Transgenic , Neurons/metabolism
3.
Front Mol Biosci ; 10: 1254834, 2023.
Article En | MEDLINE | ID: mdl-37828917

Introduction: Alzheimer's disease (AD) is currently defined according to biomarkers reflecting the core underlying neuropathological processes: Aß deposition, Tau, and neurodegeneration (ATN). The soluble phase of plasma and plasma neuron-derived extracellular vesicles (NDEVs) are increasingly being investigated as sources of biomarkers. The aim of this study was to examine the comparative biomarker potential of these two biofluids, as well as the association between respective biomarkers. Methods: We retrospectively identified three distinct diagnostic groups of 44 individuals who provided samples at baseline and at a mean of 3.1 years later; 14 were cognitively unimpaired at baseline and remained so (NRM-NRM), 13 had amnestic MCI that progressed to AD dementia (MCI-DEM) and 17 had AD dementia at both timepoints (DEM-DEM). Plasma NDEVs were isolated by immunoaffinity capture targeting the neuronal markers L1CAM, GAP43, and NLGN3. In both plasma and NDEVs, we assessed ATN biomarkers (Aß42, Aß40, total Tau, P181-Tau) alongside several other exploratory markers. Results: The Aß42/Aß40 ratio in plasma and NDEVs was lower in MCI-DEM than NRM-NRM at baseline and its levels in NDEVs decreased over time in all three groups. Similarly, plasma and NDEV-associated Aß42 was lower in MCI-DEM compared to NRM-NRM at baseline and its levels in plasma decreased over time in DEM-DEM. For NDEV-associated proBDNF, compared to NRM-NRM, its levels were lower in MCI-DEM and DEM-DEM at baseline, and they decreased over time in the latter group. No group differences were found for other exploratory markers. NDEV-associated Aß42/Aß40 ratio and proBDNF achieved the highest areas under the curve (AUCs) for discriminating between diagnostic groups, while proBDNF was positively associated with Mini-Mental State Examination (MMSE) score. No associations were found between the two biofluids for any assessed marker. Discussion: The soluble phase of plasma and plasma NDEVs demonstrate distinct biomarker profiles both at a single time point and longitudinally. The lack of association between plasma and NDEV measures indicates that the two types of biofluids demonstrate distinct biomarker signatures that may be attributable to being derived through different biological processes. NDEV-associated proBDNF may be a useful biomarker for AD diagnosis and monitoring.

4.
Res Sq ; 2023 Jul 18.
Article En | MEDLINE | ID: mdl-37502930

Background: Cognitive decline in Alzheimer's disease (AD) is associated with prion-like tau propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EV). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2(nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that tau expression triggers an elevation in brain ceramides and nSMase2 activity. Methods: To determine the therapeutic benefit of inhibiting this elevation, we evaluated the efficacy of PDDC, the first potent, selective, orally bioavailable, and brain-penetrable nSMase2 inhibitor, in the PS19 tau transgenic AD murine model. Changes in brain ceramide and sphingomyelin levels, Tau content, histopathology, and nSMase2 target engagement were monitored, as well as changes in the number of brain-derived EVs in plasma and their Tau content. Additionally, we evaluated the ability of PDDC to impede tau propagation in a murine model where an adeno-associated virus(AAV) encoding for P301L/S320F double mutant human tau was stereotaxically-injected unilaterally into the hippocampus and the contralateral transfer to the dentate gyrus was monitored. Results: Similar to human AD, PS19 mice exhibited increased brain ceramides and nSMase2 activity; both were completely normalized by PDDC treatment. PS19 mice exhibited elevated tau immunostaining, thinning of hippocampal neuronal cell layers, increased mossy fiber synaptophysin immunostaining, and glial activation, all pathologic features of human AD. PDDC treatment significantly attenuated these aberrant changes. Mouse plasma isolated from PDDC-treated PS19 mice exhibited reduced levels of neuron- and microglia-derived EVs, the former carrying lower phosphorylated Tau(pTau) levels, compared to untreated mice. In the AAV tau propagation model, PDDC normalized the tau-induced increase in brain ceramides and significantly decreased tau spreading to the contralateral side. Conclusions: PDDC is a first-in-class therapeutic candidate that normalizes elevated brain ceramides and nSMase2 activity leading to the slowing of tau spread in AD mice.

5.
Biomedicines ; 11(4)2023 Mar 24.
Article En | MEDLINE | ID: mdl-37189622

The tauopathy of Alzheimer's disease (AD) is first observed in the brainstem and entorhinal cortex, spreading trans-synaptically along specific pathways to other brain regions with recognizable patterns. Tau propagation occurs retrogradely and anterogradely (trans-synaptically) along a given pathway and through exosomes and microglial cells. Some aspects of in vivo tau spreading have been replicated in transgenic mice models expressing a mutated human MAPT (tau) gene and in wild-type mice. In this study, we aimed to characterize the propagation of different forms of tau species in non-transgenic 3-4 months old wild-type rats after a single unilateral injection of human tau oligomers and tau fibrils into the medial entorhinal cortex (mEC). We determined whether different variants of the inoculated human tau protein, tau fibrils, and tau oligomers, would induce similar neurofibrillary changes and propagate in an AD-related pattern, and how tau-related pathological changes would correlate with presumed cognitive impairment. We injected human tau fibrils and tau oligomers stereotaxically into the mEC and examined the distribution of tau-related changes at 3 days and 4, 8, and 11 months post-injection using antibodies AT8 and MC1, which reveal early phosphorylation and aberrant conformation of tau, respectively, HT7, anti-synaptophysin, and the Gallyas silver staining method. Human tau oligomers and tau fibrils exhibited some similarities and some differences in their ability to seed and propagate tau-related changes. Both human tau fibrils and tau oligomers rapidly propagated from the mEC anterogradely into the hippocampus and various parts of the neocortex. However, using a human tau-specific HT7 antibody, 3 days post-injection we found inoculated human tau oligomers in the red nucleus, primary motor, and primary somatosensory cortex, a finding not seen in animals inoculated with human tau fibrils. In animals inoculated with human tau fibrils, 3 days post-injection the HT7 antibody showed fibrils in the pontine reticular nucleus, a finding explained only by uptake of human tau fibrils by incoming presynaptic fibers to the mEC and retrograde transport of inoculated human tau fibrils to the brainstem. Rats inoculated with human tau fibrils showed as early as 4 months after inoculation a spread of phosphorylated tau protein at the AT8 epitopes throughout the brain, dramatically faster propagation of neurofibrillary changes than with human tau oligomers. The overall severity of tau protein changes 4, 8, and 11 months after inoculation of human tau oligomers and tau fibrils correlated well with spatial working memory and cognition impairments, as measured by the T-maze spontaneous alternation, novel object recognition, and object location tests. We concluded that this non-trangenic rat model of tauopathy, especially when using human tau fibrils, demonstrates rapidly developing pathologic alterations in neurons, synapses, and identifiable pathways together with cognitive and behavioral changes, through the anterograde and retrograde spreading of neurofibrillary degeneration. Therefore, it represents a promising model for future experimental studies of primary and secondary tauopathies, especially AD.

6.
Biomolecules ; 13(1)2023 01 13.
Article En | MEDLINE | ID: mdl-36671553

(1) Background and aims: Amyloidosis due to aggregation of amyloid-ß (Aß42) is a key pathogenic event in Alzheimer's disease (AD), whereas aggregation of mature islet amyloid polypeptide (IAPP37) in human islets leads to ß-cell dysfunction. The aim of this study is to uncover potential biomarkers that might additionally point to therapy for early AD patients. (2) Methods: We used bioinformatic approach to uncover novel IAPP isoforms and developed a quantitative selective reaction monitoring (SRM) proteomic assay to measure their peptide levels in human plasma and CSF from individuals with early AD and controls, as well as postmortem cerebrum of clinical confirmed AD and controls. We used Thioflavin T amyloid reporter assay to measure the IAPP isoform fibrillation propensity and anti-amyloid potential against aggregation of Aß42 and IAPP37. (3) Results: We uncovered hominid-specific IAPP isoforms: hIAPPß, which encodes an elongated propeptide, and hIAPPγ, which is processed to mature IAPP25 instead of IAPP37. We found that hIAPPß was significantly reduced in the plasma of AD patients with the accuracy of 89%. We uncovered that IAPP25 and a GDNF derived DNSP11 were nonaggregating peptides that inhibited the aggregation of IAPP37 and Aß42. (4) Conclusions: The novel peptides derived from hIAPP isoforms have potential to serve as blood-derived biomarkers for early AD and be developed as peptide based anti-amyloid medicine.


Alzheimer Disease , Hominidae , Animals , Humans , Islet Amyloid Polypeptide/genetics , Alzheimer Disease/genetics , Proteomics , Amyloidogenic Proteins , Amyloid , Amyloid beta-Peptides , Protein Isoforms/genetics , Biomarkers
7.
Aging Cell ; 22(1): e13754, 2023 01.
Article En | MEDLINE | ID: mdl-36515353

Declining nicotinamide adenine dinucleotide (NAD+ ) concentration in the brain during aging contributes to metabolic and cellular dysfunction and is implicated in the pathogenesis of aging-associated neurological disorders. Experimental therapies aimed at boosting brain NAD+ levels normalize several neurodegenerative phenotypes in animal models, motivating their clinical translation. Dietary intake of NAD+ precursors, such as nicotinamide riboside (NR), is a safe and effective avenue for augmenting NAD+ levels in peripheral tissues in humans, yet evidence supporting their ability to raise NAD+ levels in the brain or engage neurodegenerative disease pathways is lacking. Here, we studied biomarkers in plasma extracellular vesicles enriched for neuronal origin (NEVs) from 22 healthy older adults who participated in a randomized, placebo-controlled crossover trial (NCT02921659) of oral NR supplementation (500 mg, 2x /day, 6 weeks). We demonstrate that oral NR supplementation increases NAD+ levels in NEVs and decreases NEV levels of Aß42, pJNK, and pERK1/2 (kinases involved in insulin resistance and neuroinflammatory pathways). In addition, changes in NAD(H) correlated with changes in canonical insulin-Akt signaling proteins and changes in pERK1/2 and pJNK. These findings support the ability of orally administered NR to augment neuronal NAD+ levels and modify biomarkers related to neurodegenerative pathology in humans. Furthermore, NEVs offer a new blood-based window into monitoring the physiologic response of NR in the brain.


Extracellular Vesicles , Neurodegenerative Diseases , Aged , Humans , Biomarkers , Extracellular Vesicles/metabolism , Insulin , NAD/metabolism , Niacinamide/pharmacology , Niacinamide/metabolism
8.
Brain ; 146(1): 195-208, 2023 01 05.
Article En | MEDLINE | ID: mdl-35833836

Besides motor symptoms, many individuals with Parkinson's disease develop cognitive impairment perhaps due to coexisting α-synuclein and Alzheimer's disease pathologies and impaired brain insulin signalling. Discovering biomarkers for cognitive impairment in Parkinson's disease could help clarify the underlying pathogenic processes and improve Parkinson's disease diagnosis and prognosis. This study used plasma samples from 273 participants: 103 Parkinson's disease individuals with normal cognition, 121 Parkinson's disease individuals with cognitive impairment (81 with mild cognitive impairment, 40 with dementia) and 49 age- and sex-matched controls. Plasma extracellular vesicles enriched for neuronal origin were immunocaptured by targeting the L1 cell adhesion molecule, then biomarkers were quantified using immunoassays. α-Synuclein was lower in Parkinson's disease compared to control individuals (P = 0.004) and in cognitively impaired Parkinson's disease individuals compared to Parkinson's disease with normal cognition (P < 0.001) and control (P < 0.001) individuals. Amyloid-ß42 did not differ between groups. Phosphorylated tau (T181) was higher in Parkinson's disease than control individuals (P = 0.003) and in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P < 0.001) and controls (P < 0.001). Total tau was not different between groups. Tyrosine-phosphorylated insulin receptor substrate-1 was lower in Parkinson's disease compared to control individuals (P = 0.03) and in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.02) and controls (P = 0.01), and also decreased with increasing motor symptom severity (P = 0.005); serine312-phosphorylated insulin receptor substrate-1 was not different between groups. Mechanistic target of rapamycin was not different between groups, whereas phosphorylated mechanistic target of rapamycin trended lower in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.05). The ratio of α-synuclein to phosphorylated tau181 was lower in Parkinson's disease compared to controls (P = 0.001), in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P < 0.001) and decreased with increasing motor symptom severity (P < 0.001). The ratio of insulin receptor substrate-1 phosphorylated serine312 to insulin receptor substrate-1 phosphorylated tyrosine was higher in Parkinson's disease compared to control individuals (P = 0.01), in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.02) and increased with increasing motor symptom severity (P = 0.003). α-Synuclein, phosphorylated tau181 and insulin receptor substrate-1 phosphorylated tyrosine contributed in diagnostic classification between groups. These findings suggest that both α-synuclein and tau pathologies and impaired insulin signalling underlie Parkinson's disease with cognitive impairment. Plasma neuronal extracellular vesicles biomarkers may inform cognitive prognosis in Parkinson's disease.


Alzheimer Disease , Cognitive Dysfunction , Insulins , Parkinson Disease , Humans , Parkinson Disease/complications , alpha-Synuclein , Receptor, Insulin , tau Proteins , Amyloid beta-Peptides , Alzheimer Disease/complications , Cognitive Dysfunction/complications , Biomarkers
9.
Cells ; 11(21)2022 10 25.
Article En | MEDLINE | ID: mdl-36359767

Sodium-glucose cotransporter-2 inhibitors (SGLT2is), such as empagliflozin, lower blood glucose in type 2 diabetes mellitus and improve cardiorenal outcomes regardless of diabetes presence. Whether SGLT2is exert any effects on the brain's metabolism has not been studied. We conducted a single-arm clinical trial to investigate the effects of once daily administration of oral empagliflozin (25 mg) for 14 days on systemic and brain metabolism in 21 non-diabetics aged 55 years old or older. Empagliflozin lowered circulating insulin and elevated ß-hydroxybutyrate over 34-h periods, both following its first administration and after 14 days of daily administration, with minor alterations in glucose homeostasis. Levels of phosphorylated insulin-like growth factor-1 receptor (pIGF-1R), phosphorylated insulin receptor (pIR), phosphorylated-in-tyrosine insulin receptor substrate-1 (pY-IRS-1), and phosphorylated protein kinase B or AKT (pAKT) were increased in extracellular vesicles enriched for neuronal origin (NEVs) following the first empagliflozin administration, but not after 14 days. Our finding of IGF-1R upregulation in NEVs is promising because several post-mortem and epidemiological studies support the idea that upregulation of IGF signaling may protect against Alzheimer's disease (AD). Moreover, our finding showing activation of insulin signaling and, in particular, the canonical pathway (pIR, pY-IRS-1, pAKT) in NEVs is important because such changes have been repeatedly associated with neuronal survival. Using brain magnetic resonance spectroscopy (MRS), we detected decreased concentrations of the excitatory neurotransmitter glutamate and its precursor glutamine after empagliflozin administration. This finding is also encouraging since glutamatergic excitotoxicity has long been implicated in AD pathology. Overall, our findings may motivate the repurposing of SGLT2is for use in AD and other, related diseases that are characterized by downregulation of IGF-1/insulin signaling in neurons and excitotoxicity.


Alzheimer Disease , Diabetes Mellitus, Type 2 , Ketosis , Sodium-Glucose Transporter 2 Inhibitors , Female , Humans , Middle Aged , Alzheimer Disease/metabolism , Blood Glucose/metabolism , Brain/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glutamic Acid/metabolism , Insulin/metabolism , Insulin, Regular, Human/metabolism , Insulin-Like Growth Factor I/metabolism , Ketosis/metabolism , Neurons/metabolism , Neurotransmitter Agents/metabolism , Placenta Growth Factor/metabolism , Placenta Growth Factor/pharmacology , Receptor, Insulin/metabolism , Signal Transduction , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
10.
FASEB J ; 36(8): e22466, 2022 08.
Article En | MEDLINE | ID: mdl-35867070

Structural alterations or quantitative abnormalities of some mitochondrial ion channels and exchangers are associated with altered neuronal functions and increased susceptibility to mental illness. Here we have assessed levels of functionally prominent mitochondrial calcium ion channel proteins in plasma neuron-derived extracellular vesicles (NDEVs) of living patients with first episodes of psychosis (FP) and matched controls (Cs). NDEVs were enriched with an established method of precipitation and immunoabsorption by anti-human CD171 neural adhesion protein (L1CAM) antibody and extracted proteins quantified with ELISAs. CD81 exosome marker-normalized NDEV levels of leucine zipper EF-hand containing transmembrane 1 protein (LETM1), transient receptor potential cation channel subfamily M, member 4 (TRPM4), and solute carrier family 8 member B1 (SLC24A6) or mitochondrial Na+ /Ca2+ exchanger (NCLX) were significantly lower for FP patients (n = 10) than Cs (n = 10), whereas NDEV levels of voltage-dependent L-type calcium channel subunit α-1C (CACNA-1C) were significantly higher for FP patients than Cs. Abnormal structures or mitochondrial levels of LETM1, NCLX, and CACNA-1C have been linked through analyses of individual proteins, genome-wide association studies, and whole exome protein-coding sequence studies to neurodevelopmental disorders, mental retardation, schizophrenia, and major depressive diseases. A greater understanding of the altered calcium homeostasis in schizophrenia, that is attributable to underlying mitochondrial calcium channel abnormalities, will lead to improved diagnosis and treatment.


Depressive Disorder, Major , Extracellular Vesicles , Schizophrenia , Calcium/metabolism , Extracellular Vesicles/metabolism , Genome-Wide Association Study , Humans , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Neurons/metabolism , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism
11.
Ann Neurol ; 91(6): 772-781, 2022 06.
Article En | MEDLINE | ID: mdl-35285072

OBJECTIVE: As SARS-CoV-2 is known to invade neural cell mitochondria, a plasma system for quantifying central nervous system proteins in living humans was used to investigate neuropathogenic mechanisms of long-COVID-19. METHODS: SARS-CoV-2 proteins and mitochondrial proteins (MPs) in enriched plasma neuron-derived extracellular vesicles (NDEVs) and astrocyte-derived EVs (ADEVs) were quantified in resolved acute COVID-19 without post-acute sequelae of SARS-CoV-2 (PASC), PASC without neuropsychiatric manifestations (NP), PASC with NP and healthy controls. RESULTS: NDEV and ADEV mean levels of SARS-CoV-2 S1 and nucleocapsid (N) proteins were higher in all PASC sub-groups than controls, but only N levels were higher in PASC with than without NP. Exosome marker CD81-normalized NDEV mean levels of subunit 6 of MP respiratory chain complex I and subunit 10 of complex III, and neuroprotective MPs Humanin and mitochondrial open-reading frame of the 12S rRNA-c (MOTS-c) all were decreased significantly in PASC with NP but not in PASC without NP relative to controls. NDEV levels of MPs voltage-dependent anion-selective channel protein 1 (VDAC1) and N-methyl-D-aspartate receptor 1 (NMDAR1) were decreased in PASC without and with NP, whereas those of calcium channel MPs mitochondrial calcium uniporter (MCU), sodium/calcium exchanger (NCLX) and leucine zipper EF-hand containing transmembrane 1 protein (LETM1) were decreased only in PASC with NP. ADEV levels of MCU and NCLX only were increased in PASC without and with NP. INTERPRETATION: Abnormal NDEV and ADEV levels of SARS-CoV-2 N and S1 protein and MPs correlate with NP and may be biomarkers for long-COVID prognostics and therapeutic trials. ANN NEUROL 2022;91:772-781.


COVID-19 , Exosomes , Biomarkers , COVID-19/complications , Disease Progression , Exosomes/metabolism , Humans , Membrane Proteins , Mitochondrial Proteins , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
12.
Neurogastroenterol Motil ; 34(1): e14257, 2022 01.
Article En | MEDLINE | ID: mdl-34499398

BACKGROUND: Irritable bowel syndrome (IBS) is characterized by abdominal pain, bowel habit alterations, and psychiatric comorbidities. Although pathophysiology remains incompletely understood, prior work demonstrates associations with brain-derived neurotrophic factor (BDNF) and catechol-O-methyltransferase (COMT). The purpose of this study was to quantify BDNF and COMT in plasma and in neuronal-enriched extracellular vesicles (nEVs), assess relationships with psychological symptoms, and gain insight on the brain-gut connection in IBS. METHODS: Clinical data and biorepository samples from a parent investigation were used, including scores on the Perceived Stress Scale (PSS) and Center for Epidemiological Studies Depression Scale (CES-D). Distinct subpopulations of nEVs were isolated using neural cell adhesion molecule L1CAM; levels of COMT, mature BDNF, and pro-BDNF were quantified in plasma and in nEVs using ELISA. KEY RESULTS: Data from 47 females (28.11 ± 6.85 years) included 18 IBS and 29 healthy control (HC) participants. IBS participants displayed reduced plasma levels of mature BDNF compared with HC (p = 0.024). Levels of COMT plasma and IBS grouping significantly predicted CES-D scores (p = 0.034). Exploratory analyses by IBS subtype and race revealed African American HC display lower levels of COMT EV than Caucasian HC (p = 0.022). CONCLUSIONS & INFERENCES: Lower levels of mature BDNF in IBS participants, preliminary patterns detected in cargo content of nEVs, and relevance of COMT and IBS status to CES-D scores, offer insight on depressive symptomatology and brain-gut dysregulation in IBS. Lower COMT levels in nEVs of African Americans highlight the relevance of race when conducting such analyses across diverse populations.


Brain-Derived Neurotrophic Factor/metabolism , Catechol O-Methyltransferase/metabolism , Extracellular Vesicles/metabolism , Irritable Bowel Syndrome/metabolism , Neurons/metabolism , Adult , Female , Humans , Neural Cell Adhesion Molecules/metabolism , Young Adult
13.
Front Cell Dev Biol ; 8: 581882, 2020.
Article En | MEDLINE | ID: mdl-33304899

Alzheimer's disease (AD) is the most common type of dementia. Amyloid ß (Aß) plaques, tau-containing neurofibrillary tangles, and neuronal loss leading to brain atrophy are pathologic hallmarks of AD. Given the importance of early diagnosis, extensive efforts have been undertaken to identify diagnostic and prognostic biomarkers for AD. Circulating extracellular vesicles (EVs) provide a platform for "liquid biopsy" biomarkers for AD. Here, we characterized the RNA contents of plasma EVs of age-matched individuals who were cognitively normal (healthy controls (HC)) or had mild cognitive impairment (MCI) due to AD or had mild AD dementia (AD). Using RNA sequencing analysis, we found that mitochondrial (mt)-RNAs, including MT-ND1-6 mRNAs and other protein-coding and non-coding mt-RNAs, were strikingly elevated in plasma EVs of MCI and AD individuals compared with HC. EVs secreted from cultured astrocytes, microglia, and neurons after exposure to toxic conditions relevant to AD pathogenesis (Aß aggregates and H2O2), contained mitochondrial structures (detected by electron microscopy) and mitochondrial RNA and protein. We propose that in the AD brain, toxicity-causing mitochondrial damage results in the packaging of mitochondrial components for export in EVs and further propose that mt-RNAs in plasma EVs can be diagnostic and prognostic biomarkers for MCI and AD.

14.
FASEB J ; 34(4): 5967-5974, 2020 04.
Article En | MEDLINE | ID: mdl-32157747

Small cerebral vascular disease (SCeVD) demonstrated by white matter hyperintensity (WMH) on MRI contributes to the development of dementia in Alzheimer's disease (AD), but it has not been possible to correlate onset, severity, or protein components of SCeVD with characteristics of WMH in living patients. Plasma endothelial-derived exosomes (EDEs) were enriched by two-step immunoabsorption from four groups of participants with no clinical evidence of cerebrovascular disease: cognitively normal (CN) without WMH (CN without SCeVD, n = 20), CN with SCeVD (n = 22), preclinical AD (pAD) + mild cognitive impairment (MCI) without SCeVD (pAD/MCI without SCeVD, n = 22), and pAD/MCI with SCeVD (n = 16) for ELISA quantification of cargo proteins. Exosome marker CD81-normalized EDE levels of the cerebrovascular-selective biomarkers large neutral amino acid transporter 1 (LAT-1), glucose transporter type 1 (Glut-1), and permeability-glycoprotein (p-GP, ABCB1) were similarly significantly higher in the CN with SCeVD and pAD/MCI with SCeVD groups than their corresponding control groups without SCeVD. CD81-normalized EDE levels of Aß40 and Aß42 were significantly higher in the pAD/MCI with SCeVD group but not in the CN with SCeVD group relative to controls without SCeVD. Levels of normal cellular prion protein (PrPc), a receptor for amyloid peptides, and phospho-181T-tau were higher in both CN and pAD/MCI with SCeVD groups than in the corresponding controls. High EDE levels of Aß40, Aß42, and phospho-181T-tau in patients with WMH suggesting SCeVD appear at the pre-clinical or MCI stage of AD and therapeutic lowering of neurotoxic peptide levels may delay progression of AD angiopathy.


Alzheimer Disease/diagnosis , Biomarkers/blood , Cerebral Small Vessel Diseases/diagnosis , Cognitive Dysfunction/diagnosis , Endothelial Cells/metabolism , Exosomes/metabolism , White Matter/pathology , Aged , Alzheimer Disease/blood , Amyloid beta-Peptides/blood , Case-Control Studies , Cerebral Small Vessel Diseases/blood , Cognitive Dysfunction/blood , Disease Progression , Female , Humans , Male , Prospective Studies , White Matter/metabolism , tau Proteins/blood
15.
FASEB J ; 34(2): 3359-3366, 2020 02.
Article En | MEDLINE | ID: mdl-31916313

Possible involvement of complement (C) systems in the pathogenesis of traumatic brain injury (TBI) was investigated by quantifying Cproteins in plasma astrocyte-derived exosomes (ADEs) of subjects with sports-related TBI (sTBI) and TBI in military veterans (mtTBI) without cognitive impairment. All sTBI subjects (n = 24) had mild injuries, whereas eight of the mtTBI subjects had moderate, and 17 had mild injuries. Plasma levels of ADEs were decreased after acute sTBI and returned to normal within months. Cprotein levels in ADEs were from 12- to 35-fold higher than the corresponding levels in neuron-derived exosomes. CD81 exosome marker-normalized ADE levels of classical pathway C4b, alternative pathway factor D and Bb, lectin pathway mannose-binding lectin (MBL), and shared neurotoxic effectors C3b and C5b-9 terminal C complex were significantly higher and those of C regulatory proteins CR1 and CD59 were lower in the first week of acute sTBI (n = 12) than in controls (n = 12). Most C abnormalities were no longer detected in chronic sTBI at 3-12 months after acute sTBI, except for elevated levels of factor D, Bb, and MBL. In contrast, significant elevations of ADE levels of C4b, factor D, Bb, MBL, C3b and C5b-9 terminal C complex, and depressions of CR1 and CD59 relative to those of controls were observed after 1-4 years in early chronic mtTBI (n = 10) and persisted for decades except for normalization of Bb, MBL, and CD59 in late chronic mtTBI (n = 15). Complement inhibitors may be useful therapeutically in acute TBI and post-concussion syndrome.


Astrocytes/metabolism , Brain Injuries, Traumatic/blood , Complement System Proteins/metabolism , Exosomes/metabolism , Biomarkers/blood , Brain Injuries, Traumatic/pathology , C-Reactive Protein/metabolism , Female , Humans , Male , Young Adult
16.
J Neurotrauma ; 37(2): 382-388, 2020 01 15.
Article En | MEDLINE | ID: mdl-31441374

To identify long-term effects of traumatic brain injury (TBI) on levels of plasma neuron-derived exosome (NDE) protein biomarkers of cognitive impairment (CI), plasmas were obtained from four groups of older veterans, who were matched for age and sex: no TBI or CI (n = 42), no TBI with CI (n = 19), TBI without CI (n = 21), and TBI with CI (n = 26). The TBI was sustained 12 to 74 years before the study in 75%. The NDEs were enriched by sequential precipitation and anti-L1CAM antibody immunoabsorption, and extracted protein biomarkers were quantified by enzyme-linked immunosorbent assays. Chronic NDE biomarkers known to increase for three to 12 months after TBI, including cellular prion protein (PrPc), synaptogyrin-3, P-T181-tau, P-S396-tau, Aß42, and interleukin (IL)-6, were elevated significantly in subjects who had TBI and CI compared with controls with TBI but no CI. Chronic NDE biomarker levels in subjects without TBI showed significantly higher levels of PrPc, synaptogyrin-3, P-T181-tau, and Aß42, but not P-S396-tau and IL-6, in those with CI compared with controls without CI. The acute NDE biomarkers claudin-5, annexin VII, and aquaporin-4 were not increased in either group with CI. The NDE biomarkers P-S396-tau and IL-6, which are increased distinctively with CI after TBI, may prove useful in evaluating CI in older patients. Aß42 and P-tau species, as well as their respective putative receptors, PrPc and synaptogyrin-3, remain elevated for decades after TBI and may mediate TBI-associated CI and be useful targets for development of drugs.


Biomarkers/blood , Brain Injuries, Traumatic/complications , Cognitive Dysfunction/etiology , Exosomes/metabolism , Neurons/metabolism , Aged , Aged, 80 and over , Brain Injuries, Traumatic/blood , Cognitive Dysfunction/blood , Female , Humans , Male , Middle Aged
17.
Front Neurosci ; 13: 1208, 2019.
Article En | MEDLINE | ID: mdl-31849573

It was recently discovered that brain cells release extracellular vesicles (EV) which can pass from brain into blood. These findings raise the possibility that brain-derived EV's present in blood can be used to monitor disease processes occurring in the cerebrum. Since the levels of certain micro-RNAs (miRNAs) have been reported to be altered in Alzheimer's disease (AD) brain, we sought to assess miRNA dysregulation in AD brain tissue and to determine if these changes were reflected in neural EVs isolated from blood of subjects with AD. To this end, we employed high-content miRNA arrays to search for differences in miRNAs in RNA pools from brain tissue of AD (n = 5), high pathological control (HPC) (n = 5), or cognitively intact pathology-free controls (n = 5). Twelve miRNAs were altered by >1.5-fold in AD compared to controls, and six of these were also changed compared to HPCs. Analysis of hits in brain extracts from 11 AD, 7 HPCs and 9 controls revealed a similar fold difference in these six miRNAs, with three showing statistically significant group differences and one with a strong trend toward group differences. Thereafter, we focused on the four miRNAs that showed group differences and measured their content in neurally derived blood EVs isolated from 63 subjects: 16 patients with early stage dementia and a CSF Aß42+ tau profile consistent with AD, 16 individuals with mild cognitive impairment (MCI) and an AD CSF profile, and 31 cognitively intact controls with normal CSF Aß42+ tau levels. ROC analysis indicated that measurement of miR-132-3p in neurally-derived plasma EVs showed good sensitivity and specificity to diagnose AD, but did not effectively separate individuals with AD-MCI from controls. Moreover, when we measured the levels of a related miRNA, miR-212, we found that this miRNA was also decreased in neural EVs from AD patients compared to controls. Our results suggest that measurement of miR-132 and miR-212 in neural EVs should be further investigated as a diagnostic aid for AD and as a potential theragnostic.

18.
Eur Psychiatry ; 62: 124-129, 2019 10.
Article En | MEDLINE | ID: mdl-31590015

BACKGROUND: Metabolic syndrome and impaired insulin sensitivity may occur as side effects of atypical antipsychotic drugs. However, studies of peripheral insulin resistance using the homeostatic model assessment of insulin resistance (HOMA-IR) or oral glucose tolerance tests (OGTT) suggest that abnormal glucose metabolism is already present in drug-naive first-episode schizophrenia (DNFES). We hypothesized impairments of neuronal insulin signaling in DNFES. METHODS: To gain insight into neuronal insulin-signaling in vivo, we analyzed peripheral blood extracellular vesicles enriched for neuronal origin (nEVs). Phosphorylated insulin signal transduction serine-threonine kinases pS312-IRS-1, pY-IRS-1, pS473-AKT, pS9-GSK3ß, pS2448-mTOR, pT389-p70S6K and respective total protein levels were determined in plasma nEVs from 48 DNFES patients and healthy matched controls after overnight fasting. RESULTS: Upstream pS312-IRS-1 was reduced at trend level (p = 0.071; this condition may amplify IRS-1 signaling). Exploratory omnibus analysis of downstream serine-threonine kinases (AKT, GSK3ß, mTOR, p70S6K) revealed lower phosphorylated/total protein ratios in DNFES vs. controls (p = 0.013), confirming decreased pathway activation. Post-hoc-tests indicated in particular a reduced phosphorylation ratio of mTOR (p = 0.027). Phosphorylation ratios of p70S6K (p = 0.029), GSK3ß (p = 0.039), and at trend level AKT (p = 0.061), showed diagnosis-dependent statistical interactions with insulin blood levels. The phosphorylation ratio of AKT correlated inversely with PANSS-G and PANSS-total scores, and other ratios showed similar trends. CONCLUSION: These findings support the hypothesis of neuronal insulin resistance in DNFES, small sample sizes notwithstanding. The counterintuitive trend towards reduced pS312-IRS-1 in DNFES may result from adaptive feedback mechanisms. The observed changes in insulin signaling could be clinically meaningful as suggested by their association with higher PANSS scores.


Extracellular Vesicles/metabolism , Insulin Receptor Substrate Proteins/metabolism , Insulin/metabolism , Receptor, Insulin/metabolism , Schizophrenia/metabolism , Signal Transduction/physiology , Adult , Blood Glucose/metabolism , Female , Humans , Insulin Resistance/physiology , Male , Middle Aged , Phosphorylation , Young Adult
19.
Curr Alzheimer Res ; 16(8): 741-752, 2019.
Article En | MEDLINE | ID: mdl-31518224

BACKGROUND: Strong preclinical evidence suggests that exenatide, a glucagon-like peptide-1 (GLP- 1) receptor agonist used for treating type 2 diabetes, is neuroprotective and disease-modifying in Alzheimer's Disease (AD). OBJECTIVE: We performed an 18-month double-blind randomized placebo-controlled Phase II clinical trial to assess the safety and tolerability of exenatide and explore treatment responses for clinical, cognitive, and biomarker outcomes in early AD. METHOD: Eighteen participants with high probability AD based on cerebrospinal fluid (CSF) biomarkers completed the entire study prior to its early termination by the sponsor; partial outcomes were available for twentyone. RESULTS: Exenatide was safe and well-tolerated, showing an expectedly higher incidence of nausea and decreased appetite compared to placebo and decreasing glucose and GLP-1 during Oral Glucose Tolerance Tests. Exenatide treatment produced no differences or trends compared to placebo for clinical and cognitive measures, MRI cortical thickness and volume, or biomarkers in CSF, plasma, and plasma neuronal extracellular vesicles (EV) except for a reduction of Aß42 in EVs. CONCLUSION: The positive finding of lower EV Aß42 supports emerging evidence that plasma neuronal EVs provide an effective platform for demonstrating biomarker responses in clinical trials in AD. The study was underpowered due to early termination and therefore we cannot draw any firm conclusions. However, the analysis of secondary outcomes shows no trends in support of the hypothesis that exenatide is diseasemodifying in clinical AD, and lowering EV Aß42 in and of itself may not improve cognitive outcomes in AD.


Alzheimer Disease/drug therapy , Exenatide/therapeutic use , Neuroprotective Agents/therapeutic use , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Brain/diagnostic imaging , Brain/drug effects , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/psychology , Double-Blind Method , Exenatide/adverse effects , Female , Glucagon-Like Peptide 1/agonists , Humans , Male , Neuroprotective Agents/adverse effects , Neuropsychological Tests , Pilot Projects
20.
JAMA Neurol ; 76(11): 1340-1351, 2019 Nov 01.
Article En | MEDLINE | ID: mdl-31305918

IMPORTANCE: Blood biomarkers able to diagnose Alzheimer disease (AD) at the preclinical stage would enable trial enrollment when the disease is potentially reversible. Plasma neuronal-enriched extracellular vesicles (nEVs) of patients with AD were reported to exhibit elevated levels of phosphorylated (p) tau, Aß42, and phosphorylated insulin receptor substrate 1 (IRS-1). OBJECTIVE: To validate nEV biomarkers as AD predictors. DESIGN, SETTING, PARTICIPANTS: This case-control study included longitudinal plasma samples from cognitively normal participants in the Baltimore Longitudinal Study of Aging (BLSA) cohort who developed AD up to January 2015 and age- and sex-matched controls who remained cognitively normal over a similar length of follow-up. Repeated samples were blindly analyzed over 1 year from participants with clinical AD and controls from the Johns Hopkins Alzheimer Disease Research Center (JHADRC). Data were collected from September 2016 to January 2018. Analyses were conducted in March 2019. MAIN OUTCOMES AND MEASURES: Neuronal-enriched extracellular vesicles were immunoprecipitated; tau, Aß42, and IRS-1 biomarkers were quantified by immunoassays; and nEV concentration and diameter were determined by nanoparticle tracking analysis. Levels and longitudinal trajectories of nEV biomarkers between participants with future AD and control participants were compared. RESULTS: Overall, 887 longitudinal plasma samples from 128 BLSA participants who eventually developed AD and 222 age and sex-matched controls who remained cognitively normal were analyzed. Participants were followed up (from earliest sample to AD symptom onset) for a mean (SD) of 3.5 (2.31) years (range, 0-9.73 years). Overall, 161 participants were included in the training set, and 80 were in the test set. Participants in the BLSA cohort with future AD (mean [SD] age, 79.09 [7.02] years; 68 women [53.13%]) had longitudinally higher p-tau181, p-tau231, pSer312-IRS-1, pY-IRS-1, and nEV diameter than controls (mean [SD] age, 76.2 [7.36] years; 110 women [50.45%]) but had similar Aß42, total tau, TSG101, and nEV concentration. In the training BLSA set, a model combining preclinical longitudinal data achieved 89.6% area under curve (AUC), 81.8% sensitivity, and 85.8% specificity for predicting AD. The model was validated in the test BLSA set (80% AUC, 55.6% sensitivity, 88.7% specificity). Preclinical levels of nEV biomarkers were associated with cognitive performance. In addition, 128 repeated samples over 1 year from 64 JHADRC participants with clinical AD and controls were analyzed. In the JHADRC cohort (35 participants with AD: mean [SD] age, 74.03 [8.73] years; 18 women [51.43%] and 29 controls: mean [SD] age, 72.14 [7.86] years; 23 women [79.31%]), nEV biomarkers achieved discrimination with 98.9% AUC, 100% sensitivity, and 94.7% specificity in the training set and 76.7% AUC, 91.7% sensitivity, and 60% specificity in the test set. CONCLUSIONS AND RELEVANCE: We validated nEV biomarker candidates and further demonstrated that their preclinical longitudinal trajectories can predict AD diagnosis. These findings motivate further development of nEV biomarkers toward a clinical blood test for AD.

...