Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Commun ; 15(1): 2921, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609362

RESUMEN

The blue wildebeest (Connochaetes taurinus) is a keystone species in savanna ecosystems from southern to eastern Africa, and is well known for its spectacular migrations and locally extreme abundance. In contrast, the black wildebeest (C. gnou) is endemic to southern Africa, barely escaped extinction in the 1900s and is feared to be in danger of genetic swamping from the blue wildebeest. Despite the ecological importance of the wildebeest, there is a lack of understanding of how its unique migratory ecology has affected its gene flow, genetic structure and phylogeography. Here, we analyze whole genomes from 121 blue and 22 black wildebeest across the genus' range. We find discrete genetic structure consistent with the morphologically defined subspecies. Unexpectedly, our analyses reveal no signs of recent interspecific admixture, but rather a late Pleistocene introgression of black wildebeest into the southern blue wildebeest populations. Finally, we find that migratory blue wildebeest populations exhibit a combination of long-range panmixia, higher genetic diversity and lower inbreeding levels compared to neighboring populations whose migration has recently been disrupted. These findings provide crucial insights into the evolutionary history of the wildebeest, and tangible genetic evidence for the negative effects of anthropogenic activities on highly migratory ungulates.


Asunto(s)
Antílopes , Animales , Antílopes/genética , Ecosistema , África Oriental , África Austral , Efectos Antropogénicos
2.
Curr Biol ; 34(7): 1576-1586.e5, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38479386

RESUMEN

Strong genetic structure has prompted discussion regarding giraffe taxonomy,1,2,3 including a suggestion to split the giraffe into four species: Northern (Giraffa c. camelopardalis), Reticulated (G. c. reticulata), Masai (G. c. tippelskirchi), and Southern giraffes (G. c. giraffa).4,5,6 However, their evolutionary history is not yet fully resolved, as previous studies used a simple bifurcating model and did not explore the presence or extent of gene flow between lineages. We therefore inferred a model that incorporates various evolutionary processes to assess the drivers of contemporary giraffe diversity. We analyzed whole-genome sequencing data from 90 wild giraffes from 29 localities across their current distribution. The most basal divergence was dated to 280 kya. Genetic differentiation, FST, among major lineages ranged between 0.28 and 0.62, and we found significant levels of ancient gene flow between them. In particular, several analyses suggested that the Reticulated lineage evolved through admixture, with almost equal contribution from the Northern lineage and an ancestral lineage related to Masai and Southern giraffes. These new results highlight a scenario of strong differentiation despite gene flow, providing further context for the interpretation of giraffe diversity and the process of speciation in general. They also illustrate that conservation measures need to target various lineages and sublineages and that separate management strategies are needed to conserve giraffe diversity effectively. Given local extinctions and recent dramatic declines in many giraffe populations, this improved understanding of giraffe evolutionary history is relevant for conservation interventions, including reintroductions and reinforcements of existing populations.


Asunto(s)
Jirafas , Animales , Jirafas/genética , Rumiantes/genética , Evolución Biológica , Filogenia , Flujo Genético
3.
Nat Commun ; 15(1): 172, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172616

RESUMEN

Several African mammals exhibit a phylogeographic pattern where closely related taxa are split between West/Central and East/Southern Africa, but their evolutionary relationships and histories remain controversial. Bushpigs (Potamochoerus larvatus) and red river hogs (P. porcus) are recognised as separate species due to morphological distinctions, a perceived lack of interbreeding at contact, and putatively old divergence times, but historically, they were considered conspecific. Moreover, the presence of Malagasy bushpigs as the sole large terrestrial mammal shared with the African mainland raises intriguing questions about its origin and arrival in Madagascar. Analyses of 67 whole genomes revealed a genetic continuum between the two species, with putative signatures of historical gene flow, variable FST values, and a recent divergence time (<500,000 years). Thus, our study challenges key arguments for splitting Potamochoerus into two species and suggests their speciation might be incomplete. Our findings also indicate that Malagasy bushpigs diverged from southern African populations and underwent a limited bottleneck 1000-5000 years ago, concurrent with human arrival in Madagascar. These results shed light on the evolutionary history of an iconic and widespread African mammal and provide insight into the longstanding biogeographic puzzle surrounding the bushpig's presence in Madagascar.


Asunto(s)
Mamíferos , Humanos , Animales , Porcinos , Madagascar , Filogenia , Porosidad , Filogeografía , Mamíferos/genética
4.
PLoS One ; 18(3): e0269662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36952433

RESUMEN

High land areas in Uganda are suitable for the farming of Artemisia annua. However, harvested A. annua from these areas contain varying concentrations of antimalarial components. This may be attributed to variation in soil properties which affect vegetative growth characters, yield and active compounds of A. annua. Thus, bacterial composition and physiochemical properties of soil from Kabale and Kabarole high land areas where A. annua is grown were studied. The study objective was to determine the diversity of bacterial community in the rhizosphere and bulk soil of A. annua grown in highlands of Uganda. Composition of bacterial community was analyzed by amplicon sequencing of 16S rRNA genes on an Illumina Miseq platform. A total of 1,420,688 read counts was obtained and clustered into 163,493 Operational Taxonomic Units ((OTU). Kabarole highland had more OTUs (87,229) than Kabale (76,264). The phylum Proteobacteria (34.2%) was the most prevalent followed by Acidobacteria (17.3%) and Actinobacteria (15.5%). The bacteria community in the two highlands significantly differed (p <0.05) among all phyla except Proteobacteria. The main genera in bulk soil were povalibacter, brevitalea, nocardioides, stenotrophobacter, gaiella and solirubrobacter. Sphingomonas, ramlibacter paludibaculum and pseudarthrobacter were the main genera in A. annua rhizospheric soil.


Asunto(s)
Artemisia annua , Suelo , Suelo/química , Rizosfera , ARN Ribosómico 16S/genética , Uganda , Bacterias/genética , Proteobacteria/genética , Acidobacteria/genética , Microbiología del Suelo
5.
Environ Manage ; 71(1): 159-169, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35385979

RESUMEN

Seedling banks are very important in forest regeneration following forest disturbances such as crop cultivation. In 2011 and 2013 the Uganda National Forestry Authority (NFA) evicted encroachers from parts of Mabira Central Forest Reserve that had been under crop cultivation for over 40 years. This gave an opportunity for the vegetation to recover. In this study, we assessed the recovery process based on seedling bank diversity, richness and density in three blocks differing in recovery time. Two disturbed blocks, the Western Block (WB) (abandoned by encroachers 1-3 years), and the Eastern Block (EB) (abandoned 4-5 years) before this study and a nearby undisturbed area (intact) were included in the study. We recorded 48 seedlings species; 37 in WB, 30 in EB and 27 in intact. Differences in species richness were not statistically significant among blocks (F2, 88 = 1.2420, p = 0.294). All seedling species found in the intact were found in the EB and WB. There were statistically significant differences in species diversity (Shannon-Wiener: F2, 88 = 5.354, p = 0.006), density (P < 0.001) and composition (ANOSIM; R = 0.55, p = 0.001) among blocks. Apart from Broussonetia papyrifera, other species contributing to the dissimilarity (Acalypha neptunica, Antiaris toxicaria, Blighia unijugata, Funtumia elastica were late succession species. Animal dispersed species dominated intact. Seed-regenerating species were found in both WB and EB, but re-sprouts were more common in EB. These results show that proximity to intact forest aids forest recovery, even for areas with long-term cultivation history.


Asunto(s)
Plantones , Árboles , Agricultura Forestal , Bosques , Uganda , Especificidad de la Especie
6.
Mol Biol Evol ; 39(7)2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35779009

RESUMEN

African wild pigs have a contentious evolutionary and biogeographic history. Until recently, desert warthog (Phacochoerus aethiopicus) and common warthog (P. africanus) were considered a single species. Molecular evidence surprisingly suggested they diverged at least 4.4 million years ago, and possibly outside of Africa. We sequenced the first whole-genomes of four desert warthogs and 35 common warthogs from throughout their range. We show that these two species diverged much later than previously estimated, 400,000-1,700,000 years ago depending on assumptions of gene flow. This brings it into agreement with the paleontological record. We found that the common warthog originated in western Africa and subsequently colonized eastern and southern Africa. During this range expansion, the common warthog interbred with the desert warthog, presumably in eastern Africa, underlining this region's importance in African biogeography. We found that immune system-related genes may have adaptively introgressed into common warthogs, indicating that resistance to novel diseases was one of the most potent drivers of evolution as common warthogs expanded their range. Hence, we solve some of the key controversies surrounding warthog evolution and reveal a complex evolutionary history involving range expansion, introgression, and adaptation to new diseases.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de los Porcinos , África , África Oriental , Animales , Secuencia de Bases , Resistencia a la Enfermedad/genética , Porcinos
7.
Transbound Emerg Dis ; 69(5): e1526-e1540, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35179830

RESUMEN

Livestock trading through live animal markets are potential pathways for the introduction and spread of economically important pathogens like the African swine fever virus (ASFV) to new areas in several countries. Due to the high demand for live pigs in Nigeria both for restocking and slaughter, live pigs are sold at designated live pig markets (LPM) in the country. This involves movement of pigs over long distances. Despite, reports of ASF outbreaks following restocking of pigs bought from LPMs, there is paucity of information on the role of LPMs in the epidemiology of ASF. In this study, data and pig samples (whole blood, sera, tissue) were collected from 4 selected LPMs in Nigeria (Dawaki, Katsit, Numan and Pandam) between 2019 and 2020. Samples were analysed by polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Four genes of ASFV positive samples were characterized to identify the circulating genotypes. Results revealed trade activities involving transportation of pigs from these selected markets to 42 major cities and towns in thirteen (13) States of Nigeria. PCR results revealed an overall ASF prevalence of 10.77% (66/613). ASFV was confirmed by PCR in all the selected LPMs with a prevalence rate of 3.13%-23.81%. The phylogeny revealed genotype I and serogroup 4 based on the p72 protein that encodes the B646L gene and the EP402R gene encoding the CD2V. While sequence analysis of CVR of B602L gene revealed 8 tetrameric repeats variants, six of which have never been reported in Nigeria. Analysis of sera samples recorded a seroprevalence of 6.9% (16/217) within the study period. Findings from this study show that LPM are hotspots and channels for transmission and continuous spread of ASFV in Nigeria. Therefore, for ASF to be controlled in Nigeria, disease surveillance and regulation at LPMs are critical.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Virus de la Fiebre Porcina Africana/genética , Animales , Brotes de Enfermedades/veterinaria , Genotipo , Nigeria/epidemiología , Filogenia , Estudios Seroepidemiológicos , Sus scrofa , Porcinos , Enfermedades de los Porcinos/epidemiología
8.
Microbiol Resour Announc ; 10(26): e0035021, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34197187

RESUMEN

A confirmed African swine fever (ASF) outbreak in Nigeria was further investigated by partial sequencing of the B464L and E183L genes of ASF virus (ASFV). Results revealed the first-time presence of ASFV genotype II in Nigeria and West Africa. This finding has serious implications for control measures and food security.

9.
PLoS One ; 15(3): e0228979, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32187202

RESUMEN

Distantly related lineages of the enigmatic giant rosette plants of tropical alpine environments provide classical examples of convergent adaptation. For the giant senecios (Dendrosenecio), the endemic landmarks of the East African sky islands, it has also been suggested that parallel adaptation has been important for within-lineage differentiation. To test this hypothesis and to address potential gene flow and hybridization among the isolated sky islands, we organized field expeditions to all major mountains. We sampled all currently accepted species and all but one subspecies and genotyped 460 plants representing 109 populations. We tested whether genetic structuring corresponds to geography, as predicted by a parallel adaptation hypothesis, or to altitudinal belt and habitat rather than mountains, as predicted by a hypothesis of a single origin of adaptations. Bayesian and Neighbor-Net analyses showed that the main genetic structure is shallow and largely corresponds to geography, supporting a hypothesis of recent, rapid radiation via parallel altitude/habitat adaptation on different mountains. We also found evidence for intermountain admixture, suggesting several long-distance dispersals by wind across vast areas of unsuitable habitat. The combination of parallel adaptation, secondary contact, and hybridization may explain the complex patterns of morphological variation and the contradicting taxonomic treatments of these rare enigmatic giants, supporting the use of wide taxonomic concepts. Notably, the within-population genetic diversity was very low and calls for increased conservation efforts.


Asunto(s)
Análisis del Polimorfismo de Longitud de Fragmentos Amplificados/métodos , ADN de Plantas/genética , Senecio/anatomía & histología , Senecio/clasificación , Adaptación Biológica , África Oriental , Flujo Génico , Técnicas de Genotipaje , Hibridación Genética , Filogenia , Filogeografía , Senecio/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-30533685

RESUMEN

Complete genome sequences of five African swine fever virus isolates were determined directly from clinical material obtained from domestic pigs in Uganda. Four sequences were essentially identical to each other, and all were closely related to the only known genome sequence of p72 genotype IX.

11.
Front Genet ; 9: 385, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30333851

RESUMEN

East Coast fever (ECF) is a fatal sickness affecting cattle populations of eastern, central, and southern Africa. The disease is transmitted by the tick Rhipicephalus appendiculatus, and caused by the protozoan Theileria parva parva, which invades host lymphocytes and promotes their clonal expansion. Importantly, indigenous cattle show tolerance to infection in ECF-endemically stable areas. Here, the putative genetic bases underlying ECF-tolerance were investigated using molecular data and epidemiological information from 823 indigenous cattle from Uganda. Vector distribution and host infection risk were estimated over the study area and subsequently tested as triggers of local adaptation by means of landscape genomics analysis. We identified 41 and seven candidate adaptive loci for tick resistance and infection tolerance, respectively. Among the genes associated with the candidate adaptive loci are PRKG1 and SLA2. PRKG1 was already described as associated with tick resistance in indigenous South African cattle, due to its role into inflammatory response. SLA2 is part of the regulatory pathways involved into lymphocytes' proliferation. Additionally, local ancestry analysis suggested the zebuine origin of the genomic region candidate for tick resistance.

12.
Mol Ecol ; 26(13): 3513-3532, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28390111

RESUMEN

High tropical mountains harbour remarkable and fragmented biodiversity thought to a large degree to have been shaped by multiple dispersals of cold-adapted lineages from remote areas. Few dated phylogenetic/phylogeographic analyses are however available. Here, we address the hypotheses that the sub-Saharan African sweet vernal grasses have a dual colonization history and that lineages of independent origins have established secondary contact. We carried out rangewide sampling across the eastern African high mountains, inferred dated phylogenies from nuclear ribosomal and plastid DNA using Bayesian methods, and performed flow cytometry and AFLP (amplified fragment length polymorphism) analyses. We inferred a single Late Pliocene western Eurasian origin of the eastern African taxa, whose high-ploid populations in one mountain group formed a distinct phylogeographic group and carried plastids that diverged from those of the currently allopatric southern African lineage in the Mid- to Late Pleistocene. We show that Anthoxanthum has an intriguing history in sub-Saharan Africa, including Late Pliocene colonization from southeast and north, followed by secondary contact, hybridization, allopolyploidization and local extinction during one of the last glacial cycles. Our results add to a growing body of evidence showing that isolated tropical high mountain habitats have a dynamic recent history involving niche conservatism and recruitment from remote sources, repeated dispersals, diversification, hybridization and local extinction.


Asunto(s)
Evolución Biológica , Filogenia , Poaceae/clasificación , África del Norte , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Teorema de Bayes , Filogeografía
13.
BMC Vet Res ; 12: 5, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26739166

RESUMEN

BACKGROUND: Foot-and-mouth disease (FMD) is endemic in Uganda in spite of the control measures used. Various aspects of the maintenance and circulation of FMD viruses (FMDV) in Uganda are not well understood; these include the role of the African buffalo (Syncerus caffer) as a reservoir for FMDV. To better understand the epidemiology of FMD at the livestock-wildlife-interface, samples were collected from young, unvaccinated cattle from 24 pastoral herds that closely interact with wildlife around Queen Elizabeth National Park in Uganda, and analysed for evidence of FMDV infection. RESULTS: In total, 37 (15%) of 247 serum samples had detectable antibodies against FMDV non-structural proteins (NSPs) using a pan-serotypic assay. Within these 37 sera, antibody titres ≥ 80 against the structural proteins of serotypes O, SAT 1, SAT 2 and SAT 3 were detected by ELISA in 5, 7, 4 and 3 samples, respectively, while neutralizing antibodies were only detected against serotype O in 3 samples. Two FMDV isolates, with identical VP1 coding sequences, were obtained from probang samples from clinically healthy calves from the same herd and are serotype SAT 1 (topotype IV (EA-I)). Based on the VP1 coding sequences, these viruses are distinct from previous cattle and buffalo SAT 1 FMDV isolates obtained from the same area (19-30% nucleotide difference) and from the vaccine strain (TAN/155/71) used within Uganda (26% nucleotide difference). Eight herds had only one or a few animals with antibodies against FMDV NSPs while six herds had more substantial evidence of prior infection with FMDV. There was no evidence for exposure to FMDV in the other ten herds. CONCLUSIONS: The two identical SAT 1 FMDV VP1 sequences are distinct from former buffalo and cattle isolates from the same area, thus, transmission between buffalo and cattle was not demonstrated. These new SAT 1 FMDV isolates differed significantly from the vaccine strain used to control Ugandan FMD outbreaks, indicating a need for vaccine matching studies. Only six herds had clear serological evidence for exposure to O and SAT 1 FMDV. Scattered presence of antibodies against FMDV in other herds may be due to the occasional introduction of animals to the area or maternal antibodies from past infection and/or vaccination. The evidence for asymptomatic FMDV infection has implications for disease control strategies in the area since this obstructs early disease detection that is based on clinical signs in FMDV infected animals.


Asunto(s)
Bovinos/virología , Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/virología , Secuencia de Aminoácidos , Animales , Animales Salvajes/virología , Anticuerpos Antivirales/análisis , Líquidos Corporales/virología , Búfalos/virología , Fiebre Aftosa/epidemiología , Virus de la Fiebre Aftosa/clasificación , Virus de la Fiebre Aftosa/inmunología , Datos de Secuencia Molecular , Parques Recreativos , ARN Viral/análisis , Alineación de Secuencia , Uganda/epidemiología
14.
Ticks Tick Borne Dis ; 7(2): 291-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26613662

RESUMEN

Theileria parva causes East Coast Fever (ECF) a protozoan infection which manifests as a non-symptomatic syndrome among endemically stable indigenous cattle populations. Knowledge of the current genetic diversity and population structure of T. parva is critical for predicting pathogen evolutionary trends to inform development of effective control strategies. In this study the population genetic structure of 78 field isolates of T. parva from indigenous cattle (Ankole, n=41 and East African shorthorn Zebu (EASZ), n=37) sampled from the different agro ecological zones (AEZs) of Uganda was investigated. A total of eight mini- and micro-satellite markers encompassing the four chromosomes of T. parva were used to genotype the study field isolates. The genetic diversity of the surveyed T. parva populations was observed to range from 0.643±0.55 to 0.663±0.41 among the Central and Western AEZs respectively. The overall Wright's F index showed significant genetic variation between the surveyed T. parva populations based on the different AEZs and indigenous cattle breeds (FST=0.133, p<0.01) and (FST=0.101, p<0.01) respectively. Significant pairwise population genetic differentiations (p<0.05) were observed with FST values ranging from 0.048 to 0.173 between the eastern and northern, eastern and western populations respectively. The principal component analysis (PCA) showed a high level of genetic and geographic sub-structuring among populations. Linkage disequilibrium was observed when populations from all the study AEZs were treated as a single population and when analysed separately. On the overall, the significant genetic diversity and geographic sub-structuring exhibited among the study T. parva isolates has critical implications for ECF control.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Variación Genética , Genética de Población , Theileria parva/genética , Theileriosis/parasitología , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Genotipo , Repeticiones de Microsatélite/genética , Theileria parva/aislamiento & purificación , Theileriosis/epidemiología , Uganda/epidemiología
15.
PLoS One ; 10(12): e0143605, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26630483

RESUMEN

With the emergence of analytical software for the inference of viral evolution, a number of studies have focused on estimating important parameters such as the substitution rate and the time to the most recent common ancestor (tMRCA) for rapidly evolving viruses. Coupled with an increasing abundance of sequence data sampled under widely different schemes, an effort to keep results consistent and comparable is needed. This study emphasizes commonly disregarded problems in the inference of evolutionary rates in viral sequence data when sampling is unevenly distributed on a temporal scale through a study of the foot-and-mouth (FMD) disease virus serotypes SAT 1 and SAT 2. Our study shows that clustered temporal sampling in phylogenetic analyses of FMD viruses will strongly bias the inferences of substitution rates and tMRCA because the inferred rates in such data sets reflect a rate closer to the mutation rate rather than the substitution rate. Estimating evolutionary parameters from viral sequences should be performed with due consideration of the differences in short-term and longer-term evolutionary processes occurring within sets of temporally sampled viruses, and studies should carefully consider how samples are combined.


Asunto(s)
Evolución Molecular , Virus de la Fiebre Aftosa/genética , África/epidemiología , Animales , Brotes de Enfermedades/veterinaria , Fiebre Aftosa/epidemiología , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/clasificación , Virus de la Fiebre Aftosa/aislamiento & purificación , Modelos Genéticos , Filogenia , ARN Viral/genética , Recombinación Genética , Selección Genética , Alineación de Secuencia , Serotipificación , Factores de Tiempo
16.
Prev Vet Med ; 121(1-2): 56-63, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26100405

RESUMEN

Indigenous cattle populations exhibit various degrees of agro-ecological fitness and provide desirable opportunities for investments to improve sustainable production for better rural small-scale farmers' incomes globally. However, they could be a source of infection to their attendants and other susceptible livestock if their brucellosis status remains unknown. This study investigated the spatial distribution of Brucella antibodies among indigenous cattle populations in Uganda. Sera from a total of 925 indigenous cattle (410 Ankole Bos taurus indicus, 50 Nganda and 465 East African Shorthorn Zebu (EASZ) - B. indicus) obtained randomly from 209 herds spread throughout Uganda were sequentially analysed for Brucella antibodies using the indirect (I) and competitive (C) enzyme linked Immuno-sorbent assays (ELISA). Recent incidences of abortion within the previous 12 months and routine hygienic practices during parturition were explored for public health risks. Brucella antibodies occurred in approximately 8.64% (80/925) and 28.70% (95% CI: 22.52, 34.89) of the sampled individual cattle and herds, respectively. Findings have shown that Ankole and EASZ cattle had similar seroprevalences. Indigenous cattle from the different study agro-ecological zones (AEZs) exhibited varying seroprevalences ranging from approximately 1.78% (95% CI: 0, 5.29) to 19.67% (95% CI: 8.99, 30.35) in the Lake Victoria Crescent (LVC) and North Eastern Drylands (NED) respectively. Significantly higher odds for Brucella antibodies occurred in the NED (OR: 3.40, 95% CI: 1.34, 8.57, p=0.01) inhabited by EASZ cattle compared to the KP (reference category) AEZ. Recent incidences of abortions within the previous 12 months were significantly (p<0.001) associated with seropositive herds. These findings add critical evidence to existing information on the widespread occurrence of brucellosis among indigenous cattle populations in Uganda and could guide allocation of meagre resources for awareness creation. And deployment of control strategies including culling of older cattle and those which have aborted during advanced gestation, enforcement of hygiene practices and mass vaccination.


Asunto(s)
Brucella/aislamiento & purificación , Brucelosis Bovina/epidemiología , Ecosistema , Aborto Veterinario/epidemiología , Aborto Veterinario/microbiología , Crianza de Animales Domésticos , Animales , Anticuerpos Antibacterianos/sangre , Brucelosis Bovina/microbiología , Bovinos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Incidencia , Masculino , Prevalencia , Factores de Riesgo , Estudios Seroepidemiológicos , Uganda/epidemiología
17.
Mol Ecol ; 24(10): 2507-20, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25827243

RESUMEN

Over the past two decades, an increasing amount of phylogeographic work has substantially improved our understanding of African biogeography, in particular the role played by Pleistocene pluvial-drought cycles on terrestrial vertebrates. However, still little is known on the evolutionary history of semi-aquatic animals, which faced tremendous challenges imposed by unpredictable availability of water resources. In this study, we investigate the Late Pleistocene history of the common hippopotamus (Hippopotamus amphibius), using mitochondrial and nuclear DNA sequence variation and range-wide sampling. We documented a global demographic and spatial expansion approximately 0.1-0.3 Myr ago, most likely associated with an episode of massive drainage overflow. These events presumably enabled a historical continent-wide gene flow among hippopotamus populations, and hence, no clear continental-scale genetic structuring remains. Nevertheless, present-day hippopotamus populations are genetically disconnected, probably as a result of the mid-Holocene aridification and contemporary anthropogenic pressures. This unique pattern contrasts with the biogeographic paradigms established for savannah-adapted ungulate mammals and should be further investigated in other water-associated taxa. Our study has important consequences for the conservation of the hippo, an emblematic but threatened species that requires specific protection to curtail its long-term decline.


Asunto(s)
Evolución Molecular , Flujo Génico , Genética de Población , Mamíferos/genética , África , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Haplotipos , Modelos Genéticos , Datos de Secuencia Molecular , Filogeografía , Dinámica Poblacional , Análisis de Secuencia de ADN
18.
PLoS One ; 10(2): e0114811, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25664876

RESUMEN

To investigate the foot-and-mouth disease virus (FMDV) serotypes circulating in Uganda's cattle population, both serological and virological analyses of samples from outbreaks that occurred during 2012-2013 were performed. Altogether, 79 sera and 60 oropharyngeal fluid (OP)/tissue/oral swab samples were collected from herds with reported FMD outbreaks in seven different Ugandan districts. Overall, 61/79 (77%) of the cattle sera were positive for antibodies against FMDV by PrioCHECK FMDV NS ELISA and solid phase blocking ELISA detected titres ≥ 80 for serotypes O, SAT 1, SAT 2 and SAT 3 in 41, 45, 30 and 45 of these 61 seropositive samples, respectively. Virus neutralisation tests detected the highest levels of neutralising antibodies (titres ≥ 45) against serotype O in the herds from Kween and Rakai districts, against SAT 1 in the herd from Nwoya district and against SAT 2 in the herds from Kiruhura, Isingiro and Ntungamo districts. The isolation of a SAT 2 FMDV from Isingiro was consistent with the detection of high levels of neutralising antibodies against SAT 2; sequencing (for the VP1 coding region) indicated that this virus belonged to lineage I within this serotype, like the currently used vaccine strain. From the Wakiso district 11 tissue/swab samples were collected; serotype A FMDV, genotype Africa (G-I), was isolated from the epithelial samples. This study shows that within a period of less than one year, FMD outbreaks in Uganda were caused by four different serotypes namely O, A, SAT 1 and SAT 2. Therefore, to enhance the control of FMD in Uganda, there is need for efficient and timely determination of outbreak virus strains/serotypes and vaccine matching. The value of incorporating serotype A antigen into the imported vaccines along with the current serotype O, SAT 1 and SAT 2 strains should be considered.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/virología , Brotes de Enfermedades/veterinaria , Virus de la Fiebre Aftosa/genética , Fiebre Aftosa/epidemiología , Fiebre Aftosa/virología , Secuencia de Aminoácidos , Animales , Bovinos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Virus de la Fiebre Aftosa/clasificación , Datos de Secuencia Molecular , Pruebas de Neutralización/veterinaria , Filogenia , ARN Viral , Serogrupo , Uganda/epidemiología
19.
BMC Vet Res ; 11: 17, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25644407

RESUMEN

BACKGROUND: Understanding the epidemiology of foot-and-mouth disease (FMD), including roles played by different hosts, is essential for improving disease control. The African buffalo (Syncerus caffer) is a reservoir for the SAT serotypes of FMD virus (FMDV). Large buffalo populations commonly intermingle with livestock in Kenya, yet earlier studies have focused on FMD in the domestic livestock, hence the contribution of buffalo to disease in livestock is largely unknown. This study analysed 47 epithelia collected from FMD outbreaks in Kenyan cattle between 2008 and 2012, and 102 probang and serum samples collected from buffalo in three different Kenyan ecosystems; Maasai-Mara (MME) (n = 40), Tsavo (TSE) (n = 33), and Meru (ME) (n = 29). RESULTS: Antibodies against FMDV non-structural proteins were found in 65 of 102 (64%) sera from buffalo with 44/102 and 53/102 also having neutralising antibodies directed against FMDV SAT 1 and SAT 2, respectively. FMDV RNA was detected in 42% of the buffalo probang samples by RT-qPCR (Cycle Threshold (Ct) ≤32). Two buffalo probang samples were positive by VI and were identified as FMDV SAT 1 and SAT 2 by Ag-ELISA, while the latter assay detected serotypes O (1), A (20), SAT 1 (7) and SAT 2 (19) in the 47 cattle epithelia. VP1 coding sequences were generated for two buffalo and 21 cattle samples. Phylogenetic analyses revealed SAT 1 and SAT 2 virus lineages within buffalo that were distinct from those detected in cattle. CONCLUSIONS: We found that FMDV serotypes O, A, SAT 1 and SAT 2 were circulating among cattle in Kenya and cause disease, but only SAT 1 and SAT 2 viruses were successfully isolated from clinically normal buffalo. The buffalo isolates were genetically distinct from isolates obtained from cattle. Control efforts should focus primarily on reducing FMDV circulation among livestock and limiting interaction with buffalo. Comprehensive studies incorporating additional buffalo viruses are recommended.


Asunto(s)
Enfermedades de los Bovinos/virología , Virus de la Fiebre Aftosa/genética , Fiebre Aftosa/virología , Animales , Anticuerpos Antivirales/sangre , Búfalos , Bovinos , Fiebre Aftosa/sangre , Fiebre Aftosa/epidemiología , Virus de la Fiebre Aftosa/clasificación , Regulación Viral de la Expresión Génica/fisiología , Kenia/epidemiología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
20.
Parasit Vectors ; 7: 414, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25175844

RESUMEN

BACKGROUND: Non-clinical Theileria parva infection among indigenous cattle occurs upon recovery from primary disease during the first year of life. Continuous exposure to infection through contaminated tick infestations with absence of clinical disease gives rise to endemic stability. Endemic stable populations may become sources of infection if contaminated tick vectors are shared with susceptible exotic cattle. This study aimed at establishing a nationwide distribution of non-clinical T. parva infection among indigenous cattle populations to inform novel control strategies. METHODS: The occurrence of non-clinical T. parva infection among apparently healthy 925 indigenous cattle from 209 herds spread out in 10 agro-ecological zones (AEZs) was determined using a nested PCR assay. The influence of AEZ, breed, sex, age and farmers' ranking of ECF importance were interrogated for influence of non-clinical parasite occurrence. RESULTS: The overall prevalence of non-clinical T. parva infection was 30% (278/925). A gradual increase of non-clinical T. parva infection was observed ranging from 17% (95% CI: 0.03-0.23) to 43% (95% CI: 0.3-0.55) in the North Eastern Savannah Grasslands (NESG) to the Western Highland Ranges (WHR) respectively. A similarly associated 18% (95% CI: 0.07-0.28) and 35% (95% CI: 0.3-0.39) non-clinical parasite prevalence was observed among the East African shorthorn Zebu (EASZ) and Ankole cattle respectively. Average herd level non-clinical T. parva prevalence was 28%, ranging from zero to 100%. The likelihood of non-clinical T. parva infection was 35.5% greater in the western highlands compared to the northeastern semi-arid AEZs. CONCLUSIONS: Non-clinical T. parva occurs countrywide, structured along patterns of AEZ and breed gradients. These findings may guide policy formulation, deployment of integrated control strategies and local cattle improvement programs.


Asunto(s)
Agricultura , Ecosistema , Theileria parva , Theileriosis/parasitología , Animales , Bovinos , Femenino , Masculino , Prevalencia , Theileriosis/epidemiología , Uganda/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...