Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e16329, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025731

RESUMEN

Adequate soil moisture around the root zone of the crops is essential for optimal plant growth and productivity throughout the crop season, whereas excessive as well as deficient moisture is usually detrimental. A field experiment was conducted on cotton (Gossipium hirsuttum) with three water regimes (viz. well-watered (control); rainfed after one post-sowing irrigation (1-POSI) and rainfed after two post-sowing irrigations (2-POSI)) in main plots and application of eight osmoprotectants in sub plots of Split plot design to quantify the loss of seed cotton yield (SCY) under high and mild moisture stress. The DSSAT-CROPGRO-cotton model was calibrated to validate the response of cotton crop to water stress. Results elucidated that in comparison of well watered (control) crop, 1-POSI and 2-POSI reduced plant height by 13.5-28.4% and lower leaf area index (LAI) by 21.6-37.6%. Pooled analysis revealed that SCY under control was higher by 1,127 kg ha-1 over 1-POSI and 597 kg ha-1 than 2-POSI. The DSSAT-CROPGRO-cotton model fairly simulated the cotton yield as evidenced by good accuracy (d-stat ≥ 0.92) along with lower root mean square error (RMSE) of ≤183.2 kg ha-1; mean absolute percent error (MAPE) ≤6.5% under different irrigation levels. Similarly, simulated and observed biomass also exhibited good agreement with ≥0.98 d-stat; ≤533.7 kg ha-1 RMSE; and ≤4.6% MAPE. The model accurately simulated the periodical LAI, biomass and soil water dynamics as affected by varying water regimes in conformity with periodical observations. Both the experimental and the simulated results confirmed the decline of SCY with any degree of water stress. Thus, a well calibrated DSSAT-CROPGRO-cotton model may be successfully used for estimating the crop performance under varying hydro-climatic conditions.


Asunto(s)
Riego Agrícola , Deshidratación , Riego Agrícola/métodos , Suelo , Gossypium , Productos Agrícolas
2.
Sci Rep ; 13(1): 15015, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696905

RESUMEN

Drought stress as a result of rapidly changing climatic conditions has a direct negative impact on crop production especially wheat which is the 2nd staple food crop. To fulfill the nutritional demand under rapidly declining water resources, there is a dire need to adopt a precise, and efficient approach in the form of different amendments. In this regard, the present study investigated the impact of nano-biochar (NBC) and brassinosteroids (BR) in enhancing the growth and productivity of wheat under different drought stress conditions. The field study comprised different combinations of amendments (control, NBC, BR, and NBC + BR) under three irrigation levels (D0, D1 and D2). Among different treatments, the synergistic approach (NBC + BR) resulted in the maximum increase in different growth and yield parameters under normal as well as drought stress conditions. With synergistic approach (NBC + BR), the maximum plant height (71.7 cm), spike length (17.1), number of fertile tillers m-2 (410), no. of spikelets spike-1 (19.1), no. of grains spike-1 (37.9), 1000 grain weight (37 g), grain yield (4079 kg ha-1), biological yield (10,502 kg ha-1), harvest index (43.5). In the case of physiological parameters such as leaf area index, relative water contents, chlorophyll contents, and stomatal conductance were maximally improved with the combined application of NBC and BR. The same treatment caused an increase of 54, 10, and 7% in N, P, and K contents in grains, respectively compared to the control treatment. Similarly, the antioxidant response was enhanced in wheat plants under drought stress with the combined application of NBC and BR. In conclusion, the combined application of NBC and BR caused a significant increase in the growth, physiological and yield attributes of wheat under drought stress.


Asunto(s)
Brasinoesteroides , Triticum , Sequías , Antioxidantes , Grano Comestible
3.
Sci Rep ; 13(1): 2700, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792788

RESUMEN

Silicon nanoparticles (Si-NPs) have shown their potential for use in farming under water-deficient conditions. Thus, the experiment was accomplished to explore the impacts of seed priming of Si-NPs on wheat (Triticum aestivum L.) growth and yield under different drought levels. The plants were grown in pots under natural ecological environmental conditions and were harvested on 25th of April, 2020. The results revealed that seed priming of Si-NPs (0, 300, 600, and 900 mg/L) suggestively improved, the spike length, grains per spike, 1000 grains weight, plant height, grain yield, and biological yield by 12-42%, 14-54%, 5-49%, 5-41%, 17-62%, and 21-64%, respectively, relative to the control. The Si-NPs improved the leaf gas trade ascribes and chlorophyll a and b concentrations, though decreased the oxidative pressure in leaves which was demonstrated by the diminished electrolyte leakage and upgrade in superoxide dismutase and peroxidase activities in leaf under Si-NPs remedies over the control. The outcomes proposed that Si-NPs could improve the yield of wheat under a dry spell. In this manner, the utilization of Si-NPs by seed priming technique is a practical methodology for controlling the drought stress in wheat. These findings will provide the basis for future research and helpful to improve the food security under drought and heat related challenges.


Asunto(s)
Silicio , Triticum , Silicio/farmacología , Sequías , Clorofila A , Antioxidantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA