Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Am Chem Soc ; 146(3): 1860-1873, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38215281

Biotin synthase (BioB) is a member of the Radical SAM superfamily of enzymes that catalyzes the terminal step of biotin (vitamin B7) biosynthesis, in which it inserts a sulfur atom in desthiobiotin to form a thiolane ring. How BioB accomplishes this difficult reaction has been the subject of much controversy, mainly around the source of the sulfur atom. However, it is now widely accepted that the sulfur atom inserted to form biotin stems from the sacrifice of the auxiliary 2Fe-2S cluster of BioB. Here, we bioinformatically explore the diversity of BioBs available in sequence databases and find an unexpected variation in the coordination of the auxiliary iron-sulfur cluster. After in vitro characterization, including the determination of biotin formation and representative crystal structures, we report a new type of BioB utilized by virtually all obligate anaerobic organisms. Instead of a 2Fe-2S cluster, this novel type of BioB utilizes an auxiliary 4Fe-5S cluster. Interestingly, this auxiliary 4Fe-5S cluster contains a ligated sulfide that we propose is used for biotin formation. We have termed this novel type of BioB, Type II BioB, with the E. coli 2Fe-2S cluster sacrificial BioB representing Type I. This surprisingly ubiquitous Type II BioB has implications for our understanding of the function and evolution of Fe-S clusters in enzyme catalysis, highlighting the difference in strategies between the anaerobic and aerobic world.


Escherichia coli Proteins , Iron-Sulfur Proteins , Escherichia coli/metabolism , Biotin/chemistry , Escherichia coli Proteins/chemistry , Sulfur/chemistry , Sulfurtransferases/metabolism , Iron-Sulfur Proteins/chemistry
2.
Metab Eng ; 60: 97-109, 2020 07.
Article En | MEDLINE | ID: mdl-32220614

Biotin, thiamine, and lipoic acid are industrially important molecules naturally synthesized by microorganisms via biosynthetic pathways requiring iron-sulfur (FeS) clusters. Current production is exclusively by chemistry because pathway complexity hinders development of fermentation processes. For biotin, the main bottleneck is biotin synthase, BioB, a S-adenosyl methionine-dependent radical enzyme that converts dethiobiotin (DTB) to biotin. BioB overexpression is toxic, though the mechanism remains unclear. We identified single mutations in the global regulator IscR that substantially improve cellular tolerance to BioB overexpression, increasing Escherichia coli DTB-to-biotin biocatalysis by more than 2.2-fold. Based on proteomics and targeted overexpression of FeS-cluster biosynthesis genes, FeS-cluster depletion is the main reason for toxicity. We demonstrate that IscR mutations significantly affect cell viability and improve cell factories for de novo biosynthesis of thiamine by 1.3-fold and lipoic acid by 1.8-fold. We illuminate a novel engineering target for enhancing biosynthesis of complex FeS-cluster-dependent molecules, paving the way for industrial fermentation processes.


Biotin/biosynthesis , Escherichia coli Proteins/genetics , Metabolic Engineering/methods , Thiamine/biosynthesis , Thioctic Acid/biosynthesis , Transcription Factors/genetics , Biotin/analogs & derivatives , Biotin/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Iron-Sulfur Proteins/metabolism , Models, Molecular , Proteomics , Sulfurtransferases/metabolism
3.
Nat Commun ; 9(1): 787, 2018 02 20.
Article En | MEDLINE | ID: mdl-29463788

A transition toward sustainable bio-based chemical production is important for green growth. However, productivity and yield frequently decrease as large-scale microbial fermentation progresses, commonly ascribed to phenotypic variation. Yet, given the high metabolic burden and toxicities, evolutionary processes may also constrain bio-based production. We experimentally simulate large-scale fermentation with mevalonic acid-producing Escherichia coli. By tracking growth rate and production, we uncover how populations fully sacrifice production to gain fitness within 70 generations. Using ultra-deep (>1000×) time-lapse sequencing of the pathway populations, we identify multiple recurring intra-pathway genetic error modes. This genetic heterogeneity is only detected using deep-sequencing and new population-level bioinformatics, suggesting that the problem is underestimated. A quantitative model explains the population dynamics based on enrichment of spontaneous mutant cells. We validate our model by tuning production load and escape rate of the production host and apply multiple orthogonal strategies for postponing genetically driven production declines.


Escherichia coli/genetics , Mevalonic Acid/metabolism , Escherichia coli/metabolism , Fermentation , Genetic Variation , Metabolic Engineering , Models, Genetic
4.
Metab Eng ; 31: 189-97, 2015 Sep.
Article En | MEDLINE | ID: mdl-26303342

Genetic selections are important to biological engineering. Although selectable traits are limited, currently each trait only permits simultaneous introduction of a single DNA fragment. Complex pathway and strain construction however depends on rapid, combinatorial introduction of many genes that encode putative pathway candidates and homologs. To triple the utility of existing selection genes, we have developed divisible selection in Saccharomyces cerevisiae. Here, independent DNA fragments can be introduced and selected for simultaneously using a set of split hybrid transcription factors composed of parts from Escherichia coli LexA and Herpes simplex VP16 to regulate one single selectable phenotype of choice. Only when co-expressed, these split hybrid transcription factors promote transcription of a selection gene, causing tight selection of transformants containing all desired DNA fragments. Upon transformation, 94% of the selected colonies resulted strictly from transforming all three modules based on ARS/CEN plasmids. Similarly when used for chromosome integration, 95% of the transformants contained all three modules. The divisible selection system acts dominantly and thus expands selection gene utility from one to three without any genomic pre-modifications of the strain. We demonstrate the approach by introducing the fungal rubrofusarin polyketide pathway at a gene load of 11 kb distributed on three different plasmids, using a single selection trait and one yeast transformation step. By tripling the utility of existing selection genes, the employment of divisible selection improves flexibility and freedom in the strain engineering process.


Gene Expression Regulation, Fungal , Metabolic Networks and Pathways , Saccharomyces cerevisiae/metabolism , Base Sequence , Gene Dosage , Molecular Sequence Data , Phenotype , Plasmids , Polyketides/metabolism , Saccharomyces cerevisiae/genetics , Transformation, Genetic
...