Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 76
1.
Trends Plant Sci ; 29(1): 20-31, 2024 01.
Article En | MEDLINE | ID: mdl-37735061

There are growing doubts about the true role of the common mycorrhizal networks (CMN or wood wide web) connecting the roots of trees in forests. We question the claims of a substantial carbon transfer from 'mother trees' to their offspring and nearby seedlings through the CMN. Recent reviews show that evidence for the 'mother tree concept' is inconclusive or absent. The origin of this concept seems to stem from a desire to humanize plant life but can lead to misunderstandings and false interpretations and may eventually harm rather than help the commendable cause of preserving forests. Two recent books serve as examples: The Hidden Life of Trees and Finding the Mother Tree.


Mycorrhizae , Trees , Humans , Forests , Fungi , Plant Roots/microbiology , Plants , Soil
2.
Proc Natl Acad Sci U S A ; 121(2): e2304135120, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38147542

Active hydroponic substrates that stimulate on demand the plant growth have not been demonstrated so far. Here, we developed the eSoil, a low-power bioelectronic growth scaffold that can provide electrical stimulation to the plants' root system and growth environment in hydroponics settings. eSoil's active material is an organic mixed ionic electronic conductor while its main structural component is cellulose, the most abundant biopolymer. We demonstrate that barley seedlings that are widely used for fodder grow within the eSoil with the root system integrated within its porous matrix. Simply by polarizing the eSoil, seedling growth is accelerated resulting in increase of dry weight on average by 50% after 15 d of growth. The effect is evident both on root and shoot development and occurs during the growth period after the stimulation. The stimulated plants reduce and assimilate NO3- more efficiently than controls, a finding that may have implications on minimizing fertilizer use. However, more studies are required to provide a mechanistic understanding of the physical and biological processes involved. eSoil opens the pathway for the development of active hydroponic scaffolds that may increase crop yield in a sustainable manner.


Biological Phenomena , Seedlings , Seedlings/metabolism , Hydroponics/methods , Plant Roots/metabolism
3.
New Phytol ; 239(6): 2166-2179, 2023 09.
Article En | MEDLINE | ID: mdl-37148187

Nitrogen (N) fertilization increases biomass and soil organic carbon (SOC) accumulation in boreal pine forests, but the underlying mechanisms remain uncertain. At two Scots pine sites, one undergoing annual N fertilization and the other a reference, we sought to explain these responses. We measured component fluxes, including biomass production, SOC accumulation, and respiration, and summed them into carbon budgets. We compared the resulting summations to ecosystem fluxes measured by eddy covariance. N fertilization increased most component fluxes (P < 0.05), especially SOC accumulation (20×). Only fine-root, mycorrhiza, and exudate production decreased, by 237 (SD = 28) g C m-2 yr-1 . Stemwood production increases were ascribed to this partitioning shift, gross primary production (GPP), and carbon-use efficiency, in that order. The methods agreed in their estimates of GPP in both stands (P > 0.05), but the components detected an increase in net ecosystem production (NEP) (190 (54) g C m-2 yr-1 ; P < 0.01) that eddy covariance did not (19 (62) g C m-2 yr-1 ; ns). The pairing of plots, the simplicity of the sites, and the strength of response provide a compelling description of N effects on the C budget. However, the disagreement between methods calls for further paired tests of N fertilization effects in simple forest ecosystems.


Ecosystem , Pinus sylvestris , Carbon , Trees/physiology , Nitrogen , Soil , Forests , Carbon Dioxide
4.
New Phytol ; 239(1): 19-28, 2023 07.
Article En | MEDLINE | ID: mdl-37149889

Seminal scientific papers positing that mycorrhizal fungal networks can distribute carbon (C) among plants have stimulated a popular narrative that overstory trees, or 'mother trees', support the growth of seedlings in this way. This narrative has far-reaching implications for our understanding of forest ecology and has been controversial in the scientific community. We review the current understanding of ectomycorrhizal C metabolism and observations on forest regeneration that make the mother tree narrative debatable. We then re-examine data and conclusions from publications that underlie the mother tree hypothesis. Isotopic labeling methods are uniquely suited for studying element fluxes through ecosystems, but the complexity of mycorrhizal symbiosis, low detection limits, and small carbon discrimination in biological processes can cause researchers to make important inferences based on miniscule shifts in isotopic abundance, which can be misleading. We conclude that evidence of a significant net C transfer via common mycorrhizal networks that benefits the recipients is still lacking. Furthermore, a role for fungi as a C pipeline between trees is difficult to reconcile with any adaptive advantages for the fungi. Finally, the hypothesis is neither supported by boreal forest regeneration patterns nor consistent with the understanding of physiological mechanisms controlling mycorrhizal symbiosis.


Mycorrhizae , Humans , Carbon/metabolism , Ecosystem , Forests , Mycorrhizae/physiology , Soil Microbiology , Trees/physiology
5.
ACS Nano ; 17(4): 3430-3441, 2023 02 28.
Article En | MEDLINE | ID: mdl-36796108

Increasing plants' photosynthetic efficiency is a major challenge that must be addressed in order to cover the food demands of the growing population in the changing climate. Photosynthesis is greatly limited at the initial carboxylation reaction, where CO2 is converted to the organic acid 3-PGA, catalyzed by the RuBisCO enzyme. RuBisCO has poor affinity for CO2, but also the CO2 concentration at the RuBisCO site is limited by the diffusion of atmospheric CO2 through the various leaf compartments to the reaction site. Beyond genetic engineering, nanotechnology can offer a materials-based approach for enhancing photosynthesis, and yet, it has mostly been explored for the light-dependent reactions. In this work, we developed polyethyleneimine-based nanoparticles for enhancing the carboxylation reaction. We demonstrate that the nanoparticles can capture CO2 in the form of bicarbonate and increase the CO2 that reacts with the RuBisCO enzyme, enhancing the 3-PGA production in in vitro assays by 20%. The nanoparticles can be introduced to the plant via leaf infiltration and, because of the functionalization with chitosan oligomers, they do not induce any toxic effect to the plant. In the leaves, the nanoparticles localize in the apoplastic space but also spontaneously reach the chloroplasts where photosynthetic activity takes place. Their CO2 loading-dependent fluorescence verifies that, in vivo, they maintain their ability to capture CO2 and can be therefore reloaded with atmospheric CO2 while in planta. Our results contribute to the development of a nanomaterials-based CO2-concentrating mechanism in plants that can potentially increase photosynthetic efficiency and overall plants' CO2 storage.


Chitosan , Nanoparticles , Carbon Dioxide , Polyethyleneimine , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Photosynthesis , Plants/metabolism , Plant Leaves/metabolism
7.
Proc Natl Acad Sci U S A ; 119(26): e2118852119, 2022 06 28.
Article En | MEDLINE | ID: mdl-35727987

Carbon storage and cycling in boreal forests-the largest terrestrial carbon store-is moderated by complex interactions between trees and soil microorganisms. However, existing methods limit our ability to predict how changes in environmental conditions will alter these associations and the essential ecosystem services they provide. To address this, we developed a metatranscriptomic approach to analyze the impact of nutrient enrichment on Norway spruce fine roots and the community structure, function, and tree-microbe coordination of over 350 root-associated fungal species. In response to altered nutrient status, host trees redefined their relationship with the fungal community by reducing sugar efflux carriers and enhancing defense processes. This resulted in a profound restructuring of the fungal community and a collapse in functional coordination between the tree and the dominant Basidiomycete species, and an increase in functional coordination with versatile Ascomycete species. As such, there was a functional shift in community dominance from Basidiomycetes species, with important roles in enzymatically cycling recalcitrant carbon, to Ascomycete species that have melanized cell walls that are highly resistant to degradation. These changes were accompanied by prominent shifts in transcriptional coordination between over 60 predicted fungal effectors, with more than 5,000 Norway spruce transcripts, providing mechanistic insight into the complex molecular dialogue coordinating host trees and their fungal partners. The host-microbe dynamics captured by this study functionally inform how these complex and sensitive biological relationships may mediate the carbon storage potential of boreal soils under changing nutrient conditions.


Ascomycota , Basidiomycota , Mycorrhizae , Picea , Ascomycota/metabolism , Basidiomycota/metabolism , Carbon/metabolism , Ecosystem , Forests , Mycorrhizae/genetics , Mycorrhizae/physiology , Picea/genetics , Picea/microbiology , Soil/chemistry , Soil Microbiology , Taiga , Transcriptome , Trees/metabolism , Trees/microbiology
8.
Physiol Plant ; 174(3): e13690, 2022 May.
Article En | MEDLINE | ID: mdl-35460591

Fertilization with nitrogen (N)-rich compounds leads to increased growth but may compromise phenology and winter survival of trees in boreal regions. During autumn, N is remobilized from senescing leaves and stored in other parts of the tree to be used in the next growing season. However, the mechanism behind the N fertilization effect on winter survival is not well understood, and it is unclear how N levels or forms modulate autumn senescence. We performed fertilization experiments and showed that treating Populus saplings with inorganic nitrogen resulted in a delay in senescence. In addition, by using precise delivery of solutes into the xylem stream of Populus trees in their natural environment, we found that delay of autumn senescence was dependent on the form of N administered: inorganic N ( NO 3 - ) delayed senescence, but amino acids (Arg, Glu, Gln, and Leu) did not. Metabolite profiling of leaves showed that the levels of tricarboxylic acids, arginine catabolites (ammonium, ornithine), glycine, glycine-serine ratio and overall carbon-to-nitrogen (C/N) ratio were affected differently by the way of applying NO3 - and Arg treatments. In addition, the onset of senescence did not coincide with soluble sugar accumulation in control trees or in any of the treatments. We propose that different regulation of C and N status through direct molecular signaling of NO3 - and/or different allocation of N between tree parts depending on N forms could account for the contrasting effects of NO3 - and tested here amino acids (Arg, Glu, Gln, and Leu) on autumn senescence.


Nitrates , Populus , Amino Acids , Fertilization , Glycine , Nitrates/metabolism , Nitrates/pharmacology , Nitrogen/metabolism , Plant Leaves/physiology , Plant Senescence , Populus/metabolism , Seasons , Trees/metabolism
9.
Mater Horiz ; 9(4): 1317-1318, 2022 Apr 04.
Article En | MEDLINE | ID: mdl-35332891

Correction for 'Biohybrid plants with electronic roots via in vivo polymerization of conjugated oligomers' by Daniela Parker et al., Mater. Horiz., 2021, 8, 3295-3305, DOI: 10.1039/D1MH01423D.

10.
Plant Mol Biol ; 109(4-5): 413-425, 2022 Jul.
Article En | MEDLINE | ID: mdl-35103913

The interaction between plants and plant pathogens can have significant effects on ecosystem performance. For their growth and development, both bionts rely on amino acids. While amino acids are key transport forms of nitrogen and can be directly absorbed from the soil through specific root amino acid transporters, various pathogenic microbes can invade plant tissues to feed on different plant amino acid pools. In parallel, plants may initiate an immune response program to restrict this invasion, employing various amino acid transporters to modify the amino acid pool at the site of pathogen attack. The interaction between pathogens and plants is sophisticated and responses are dynamic. Both avail themselves of multiple tools to increase their chance of survival. In this review, we highlight the role of amino acid transporters during pathogen infection. Having control over the expression of those transporters can be decisive for the fate of both bionts but the underlying mechanism that regulates the expression of amino acid transporters is not understood to date. We provide an overview of the regulation of a variety of amino acid transporters, depending on interaction with biotrophic, hemibiotrophic or necrotrophic pathogens. In addition, we aim to highlight the interplay of different physiological processes on amino acid transporter regulation during pathogen attack and chose the LYSINE HISTIDINE TRANSPORTER1 (LHT1) as an example.


Arabidopsis Proteins , Arabidopsis , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Amino Acid Transport Systems, Basic/metabolism , Amino Acids/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Ecosystem
11.
Tree Physiol ; 42(3): 513-522, 2022 03 09.
Article En | MEDLINE | ID: mdl-34580709

Boreal trees are capable of taking up organic nitrogen (N) as effectively as inorganic N. Depending on the abundance of soil N forms, plants may adjust physiological and morphological traits to optimize N uptake. However, the link between these traits and N uptake in response to soil N sources is poorly understood. We examined Pinus sylvestris L. seedlings' biomass growth and allocation, transpiration and N uptake in response to additions of organic N (the amino acid arginine) or inorganic N (ammonium nitrate). We also monitored in situ soil N fluxes in the pots following an addition of N, using a microdialysis system. Supplying organic N resulted in a stable soil N flux, whereas the inorganic N resulted in a sharp increase of nitrate flux followed by a rapid decline, demonstrating a fluctuating N supply and a risk for loss of nitrate from the growth medium. Seedlings supplied with organic N achieved a greater biomass with a higher N content, thus reaching a higher N recovery compared with those supplied inorganic N. In spite of a higher N concentration in organic N seedlings, root-to-shoot ratio and transpiration per unit leaf area were similar to those of inorganic N seedlings. We conclude that enhanced seedlings' nutrition and growth under the organic N source may be attributed to a stable supply of N, owing to a strong retention rate in the soil medium.


Pinus sylvestris , Pinus , Nitrogen/metabolism , Pinus/physiology , Pinus sylvestris/physiology , Plant Roots/physiology , Seedlings/physiology , Soil/chemistry , Trees/metabolism
12.
Mater Horiz ; 8(12): 3295-3305, 2021 11 29.
Article En | MEDLINE | ID: mdl-34730593

Plant processes, ranging from photosynthesis through production of biomaterials to environmental sensing and adaptation, can be used in technology via integration of functional materials and devices. Previously, plants with integrated organic electronic devices and circuits distributed in their vascular tissue and organs have been demonstrated. To circumvent biological barriers, and thereby access the internal tissue, plant cuttings were used, which resulted in biohybrids with limited lifetime and use. Here, we report intact plants with electronic functionality that continue to grow and develop enabling plant-biohybrid systems that fully maintain their biological processes. The biocatalytic machinery of the plant cell wall was leveraged to seamlessly integrate conductors with mixed ionic-electronic conductivity along the root system of the plants. Cell wall peroxidases catalyzed ETE-S polymerization while the plant tissue served as the template, organizing the polymer in a favorable manner. The conductivity of the resulting p(ETE-S) roots reached the order of 10 S cm-1 and remained stable over the course of 4 weeks while the roots continued to grow. The p(ETE-S) roots were used to build supercapacitors that outperform previous plant-biohybrid charge storage demonstrations. Plants were not affected by the electronic functionalization but adapted to this new hybrid state by developing a more complex root system. Biohybrid plants with electronic roots pave the way for autonomous systems with potential applications in energy, sensing and robotics.


Electronics , Plants , Adaptation, Physiological , Photosynthesis , Polymerization
13.
New Phytol ; 232(1): 113-122, 2021 10.
Article En | MEDLINE | ID: mdl-34166537

Understanding how plant water uptake interacts with acquisition of soil nitrogen (N) and other nutrients is fundamental for predicting plant responses to a changing environment, but it is an area where models disagree. We present a novel isotopic labelling approach which reveals spatial patterns of water and N uptake, and their interaction, by trees. The stable isotopes 15 N and 2 H were applied to a small area of the forest floor in stands with high and low soil N availability. Uptake by surrounding trees was measured. The sensitivity of N acquisition to water uptake was quantified by statistical modelling. Trees in the high-N stand acquired twice as much 15 N as in the low-N stand and around half of their N uptake was dependent on water uptake (2 H enrichment). By contrast, in the low-N stand there was no positive effect of water uptake on N uptake. We conclude that tree N acquisition was only marginally dependent on water flux toward the root surface under low-N conditions whereas under high-N conditions, the water-associated N uptake was substantial. The results suggest a fundamental shift in N acquisition strategy under high-N conditions.


Pinus sylvestris , Trees , Nitrogen/analysis , Soil , Taiga , Water
14.
Ecol Lett ; 24(6): 1215-1224, 2021 Jun.
Article En | MEDLINE | ID: mdl-33749095

Trees receive growth-limiting nitrogen from their ectomycorrhizal symbionts, but supplying the fungi with carbon can also cause nitrogen immobilization, which hampers tree growth. We present results from field and greenhouse experiments combined with mathematical modelling, showing that these are not conflicting outcomes. Mycorrhizal networks connect multiple trees, and we modulated C provision by strangling subsets of Pinus sylvestris trees, assuming that carbon supply to fungi was reduced proportionally to the strangled fraction. We conclude that trees gain additional nitrogen at the expense of their neighbours by supplying more carbon to the fungi. But this additional carbon supply aggravates nitrogen limitation via immobilization of the shared fungal biomass. We illustrate the evolutionary underpinnings of this situation by drawing on the analogous tragedy of the commons, where the shared mycorrhizal network is the commons, and explain how rising atmospheric CO2 may lead to greater nitrogen immobilization in the future.


Mycorrhizae , Biomass , Carbon , Nitrogen , Plant Roots , Soil , Trees
15.
Tree Physiol ; 41(1): 63-75, 2021 01 09.
Article En | MEDLINE | ID: mdl-32864696

Several studies have suggested that CO2 transport in the transpiration stream can considerably bias estimates of root and stem respiration in ring-porous and diffuse-porous tree species. Whether this also happens in species with tracheid xylem anatomy and lower sap flow rates, such as conifers, is currently unclear. We infused 13C-labelled solution into the xylem near the base of two 90-year-old Pinus sylvestris L. trees. A custom-built gas exchange system and an online isotopic analyser were used to sample the CO2 efflux and its isotopic composition continuously from four positions along the bole and one upper canopy shoot in each tree. Phloem and needle tissue 13C enrichment was also evaluated at these positions. Most of the 13C label was lost by diffusion within a few metres of the infusion point indicating rapid CO2 loss during vertical xylem transport. No 13C enrichment was detected in the upper bole needle tissues. Furthermore, mass balance calculations showed that c. 97% of the locally respired CO2 diffused radially to the atmosphere. Our results support the notion that xylem CO2 transport is of limited magnitude in conifers. This implies that the concerns that stem transport of CO2 derived from root respiration biases chamber-based estimates of forest carbon cycling may be unwarranted for mature conifer stands.


Pinus sylvestris , Pinus , Carbon Dioxide , Phloem , Plant Stems , Trees , Xylem
16.
Physiol Plant ; 167(1): 34-47, 2019 Sep.
Article En | MEDLINE | ID: mdl-30561048

Cellular respiration via the alternative oxidase pathway (AOP) leads to a considerable loss in efficiency. Compared to the cytochrome pathway (COP), AOP produces 0-50% as much ATP per carbon (C) respired. Relative partitioning between the pathways can be measured in vivo based on their differing isotopic discriminations against 18 O in O2 . Starting from published methods, we have refined and tested a new protocol to improve measurement precision and efficiency. The refinements detect an effect of tissue water content (P < 0.0001), which we have removed, and yield precise discrimination endpoints in the presence of pathway-specific respiratory inhibitors [CN- and salicylhydroxamic acid (SHAM)], which improves estimates of AOP/COP partitioning. Fresh roots of Pinus sylvestris were sealed in vials with a CO2 trap. The air was replaced to ensure identical starting conditions. Headspace air was repeatedly sampled and isotopically analyzed using isotope-ratio mass spectrometry. The method allows high-precision measurement of the discrimination against 18 O in O2 because of repeated measurements of the same incubation vial. COP and AOP respiration discriminated against 18 O by 15.1 ± 0.3‰ and 23.8 ± 0.4‰, respectively. AOP contributed to root respiration by 23 ± 0.2% of the total in an unfertilized stand. In a second, nitrogen-fertilized, stand AOP contribution was only 14 ± 0.2% of the total. These results suggest the improved method can be used to assess the relative importance of COP and AOP activities in ecosystems, potentially yielding information on the role of each pathway for the carbon use efficiency of organisms.


Cell Respiration/physiology , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Pinus/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Roots/physiology , Oxygen/metabolism
17.
New Phytol ; 218(1): 119-130, 2018 04.
Article En | MEDLINE | ID: mdl-29226964

The classic model of nitrogen (N) flux into roots is as a Michaelis-Menten (MM) function of soil-N concentration at root surfaces. Furthermore, soil-N transport processes that determine soil-N concentration at root surfaces are seen as a bottleneck for plant nutrition. Yet, neither the MM relationship nor soil-N transport mechanisms are represented in current terrestrial biosphere models. Processes governing N supply to roots - diffusion, mass flow, N immobilization by soil microbes - are incorporated in a model of root-N uptake. We highlight a seldom considered interaction between these processes: nutrient traverses the rhizosphere more quickly in the presence of mass flow, reducing the probability of its immobilization before reaching the root surface. Root-N uptake is sensitive to the rate of mass flow for widely spaced roots with high N uptake capacity, but not for closely spaced roots or roots with low uptake capacity. The results point to a benefit of root switching from high- to low-affinity N transport systems in the presence of mass flow. Simulations indicate a strong impact of soil water uptake on N delivery to widely spaced roots through transpirationally driven mass flow. Furthermore, a given rate of N uptake per unit soil volume may be achieved by lower root biomass in the presence of mass flow.


Nitrogen/metabolism , Plant Roots/metabolism , Biological Transport , Models, Biological , Organ Size
18.
Physiol Plant ; 162(3): 370-378, 2018 Mar.
Article En | MEDLINE | ID: mdl-28718915

A key weakness in current Earth System Models is the representation of thermal acclimation of photosynthesis in response to changes in growth temperatures. Previous studies in boreal and temperate ecosystems have shown leaf-scale photosynthetic capacity parameters, the maximum rates of carboxylation (Vcmax ) and electron transport (Jmax ), to be positively correlated with foliar nitrogen (N) content at a given reference temperature. It is also known that Vcmax and Jmax exhibit temperature optima that are affected by various environmental factors and, further, that N partitioning among the foliar photosynthetic pools is affected by N availability. However, despite the strong recent anthropogenic influence on atmospheric temperatures and N deposition to forests, little is known about the role of foliar N contents in controlling the photosynthetic temperature responses. In this study, we investigated the temperature dependencies of Vcmax and Jmax in 1-year-old needles of mature boreal Pinus sylvestris (Scots pine) trees growing under low and high N availabilities in northern Sweden. We found that needle N status did not significantly affect the temperature responses of Vcmax or Jmax when the responses were fitted to a peaked function. If such N insensitivity is a common tree trait it will simplify the interpretation of the results from gradient and multi-species studies, which commonly use sites with differing N availabilities, on temperature acclimation of photosynthetic capacity. Moreover, it will simplify modeling efforts aimed at understanding future carbon uptake by precluding the need to adjust the shape of the temperature response curves to variation in N availability.


Nitrogen/metabolism , Photosynthesis/physiology , Pinus sylvestris/physiology , Plant Leaves/physiology , Temperature , Acclimatization/physiology , Algorithms , Carbon/metabolism , Carbon Dioxide/metabolism , Ecosystem , Electron Transport , Fertilizers , Pinus sylvestris/metabolism , Plant Leaves/metabolism , Seasons , Sweden
19.
Ecol Evol ; 7(18): 7420-7433, 2017 09.
Article En | MEDLINE | ID: mdl-28944027

Symbioses such as lichens are potentially threatened by drastic environmental changes. We used the lichen Peltigera aphthosa-a symbiosis between a fungus (mycobiont), a green alga (Coccomyxa sp.), and N2-fixing cyanobacteria (Nostoc sp.)-as a model organism to assess the effects of environmental perturbations in nitrogen (N) or phosphorus (P). Growth, carbon (C) and N stable isotopes, CNP concentrations, and specific markers were analyzed in whole thalli and the partners after 4 months of daily nutrient additions in the field. Thallus N was 40% higher in N-fertilized thalli, amino acid concentrations were twice as high, while fungal chitin but not ergosterol was lower. Nitrogen also resulted in a thicker algal layer and density, and a higher δ13C abundance in all three partners. Photosynthesis was not affected by either N or P. Thallus growth increased with light dose independent of fertilization regime. We conclude that faster algal growth compared to fungal lead to increased competition for light and CO 2 among the Coccomyxa cells, and for C between alga and fungus, resulting in neither photosynthesis nor thallus growth responded to N fertilization. This suggests that the symbiotic lifestyle of lichens may prevent them from utilizing nutrient abundance to increase C assimilation and growth.

20.
Ecol Appl ; 27(6): 1838-1851, 2017 09.
Article En | MEDLINE | ID: mdl-28464423

We report results from long-term simulated external nitrogen (N) input experiments in three northern Pinus sylvestris forests, two of moderately high and one of moderately low productivity, assessing effects on annual net primary production (NPP) of woody mass and its interannual variation in response to variability in weather conditions. A sigmoidal response of wood NPP to external N inputs was observed in the both higher and lower productivity stands, reaching a maximum of ~65% enhancement regardless of the native site productivity, saturating at an external N input of 4-5 g N·m-2 ·yr-1 . The rate of increase in wood NPP and the N response efficiency (REN , increase in wood NPP per external N input) were maximized at an external N input of ~3 g N·m-2 ·yr-1 , regardless of site productivity. The maximum REN was greater in the higher productivity than the lower productivity stand (~20 vs. ~14 g C/g N). The N-induced enhancement of wood NPP and its REN were, however, markedly contingent on climatic variables. In both of the higher and lower productivity stands, wood NPP increased with growing season precipitation (P), but only up to ~400 mm. The sensitivity of the response to P increased with increasing external N inputs. Increasing growing season temperature (T) somewhat increased the N-induced drought effect, whereas decreasing T reduced the drought effect. These responses of wood NPP infused a large temporal variation to REN , making the use of a fixed value unadvisable. Based on these results, we suggest that regional climate conditions and future climate scenarios should be considered when modeling carbon sequestration in response to N deposition in boreal P. sylvestris, and possibly other forests.


Carbon Sequestration , Climate , Forests , Nitrogen/metabolism , Pinus sylvestris/metabolism , Norway , Seasons , Sweden , Trees/metabolism , Wood/chemistry , Wood/metabolism
...