Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 57
1.
BMC Biotechnol ; 24(1): 17, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566117

Thermostable DNA polymerases, such as Taq isolated from the thermophilic bacterium Thermus aquaticus, enable one-pot exponential DNA amplification known as polymerase chain reaction (PCR). However, properties other than thermostability - such as fidelity, processivity, and compatibility with modified nucleotides - are important in contemporary molecular biology applications. Here, we describe the engineering and characterization of a fusion between a DNA polymerase identified in the marine archaea Nanoarchaeum equitans and a DNA binding domain from the thermophile Sulfolobus solfataricus. The fusion creates a highly active enzyme, Neq2X7, capable of amplifying long and GC-rich DNA, unaffected by replacing dTTP with dUTP in PCR, and tolerant to various known PCR inhibitors. This makes it an attractive DNA polymerase for use, e.g., with uracil excision (USER) DNA assembly and for contamination-free diagnostics. Using a magnification via nucleotide imbalance fidelity assay, Neq2X7 was estimated to have an error rate lower than 2 ∙ 10-5 bp-1 and an approximately 100x lower fidelity than the parental variant Neq2X, indicating a trade-off between fidelity and processivity - an observation that may be of importance for similarly engineered DNA polymerases. Neq2X7 is easy to produce for routine application in any molecular biology laboratory, and the expression plasmid is made freely available.


DNA-Directed DNA Polymerase , Uracil , Polymerase Chain Reaction , DNA-Directed DNA Polymerase/genetics , Uracil/metabolism , Plasmids , DNA
2.
J Bacteriol ; 206(2): e0035523, 2024 02 22.
Article En | MEDLINE | ID: mdl-38197669

In Escherichia coli, one of the best understood microorganisms, much can still be learned about the basic interactions between transcription factors and promoters. When a cAMP-deficient cya mutant is supplied with maltose as the main carbon source, mutations develop upstream from the two genes malT and sdaC. Here, we explore the regulation of the two promoters, using fluorescence-based genetic reporters in combination with both spontaneously evolved and systematically engineered cis-acting mutations. We show that in the cya mutant, regulation of malT and sdaC evolves toward cAMP-independence and increased expression in the stationary phase. Furthermore, we show that the location of the cAMP receptor protein (Crp) binding site upstream of malT is important for alternative sigma factor usage. This provides new insights into the architecture of bacterial promoters and the global interplay between Crp and sigma factors in different growth phases.IMPORTANCEThis work provides new general insights into (1) the architecture of bacterial promoters, (2) the importance of the location of Class I Crp-dependent promoters, and (3) the global interplay between Crp and sigma factors in different growth phases.


Escherichia coli Proteins , Escherichia coli , Bacterial Proteins/metabolism , Cyclic AMP Receptor Protein/genetics , Cyclic AMP Receptor Protein/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Mutation , Sigma Factor/genetics , Sigma Factor/metabolism , Transcription, Genetic
3.
Nat Commun ; 14(1): 4202, 2023 07 14.
Article En | MEDLINE | ID: mdl-37452022

Lytic polysaccharide monooxygenases (LPMOs) are oxidative enzymes that help break down lignocellulose, making them highly attractive for improving biomass utilization in industrial biotechnology. The catalytically essential N-terminal histidine (His1) of LPMOs is post-translationally modified by methylation in filamentous fungi to protect them from auto-oxidative inactivation, however, the responsible methyltransferase enzyme is unknown. Using mass-spectrometry-based quantitative proteomics in combination with systematic CRISPR/Cas9 knockout screening in Aspergillus nidulans, we identify the N-terminal histidine methyltransferase (NHMT) encoded by the gene AN4663. Targeted proteomics confirm that NHMT was solely responsible for His1 methylation of LPMOs. NHMT is predicted to encode a unique seven-transmembrane segment anchoring a soluble methyltransferase domain. Co-localization studies show endoplasmic reticulum residence of NHMT and co-expression in the industrial production yeast Komagataella phaffii with LPMOs results in His1 methylation of the LPMOs. This demonstrates the biotechnological potential of recombinant production of proteins and peptides harbouring this specific post-translational modification.


Histidine , Mixed Function Oxygenases , Mixed Function Oxygenases/metabolism , Histidine/genetics , Histidine/metabolism , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Polysaccharides/metabolism , Protein Processing, Post-Translational
4.
Nucleic Acids Res ; 51(D1): D1558-D1567, 2023 01 06.
Article En | MEDLINE | ID: mdl-36420904

The SEVA platform (https://seva-plasmids.com) was launched one decade ago, both as a database (DB) and as a physical repository of plasmid vectors for genetic analysis and engineering of Gram-negative bacteria with a structure and nomenclature that follows a strict, fixed architecture of functional DNA segments. While the current update keeps the basic features of earlier versions, the platform has been upgraded not only with many more ready-to-use plasmids but also with features that expand the range of target species, harmonize DNA assembly methods and enable new applications. In particular, SEVA 4.0 includes (i) a sub-collection of plasmids for easing the composition of multiple DNA segments with MoClo/Golden Gate technology, (ii) vectors for Gram-positive bacteria and yeast and [iii] off-the-shelf constructs with built-in functionalities. A growing collection of plasmids that capture part of the standard-but not its entirety-has been compiled also into the DB and repository as a separate corpus (SEVAsib) because of its value as a resource for constructing and deploying phenotypes of interest. Maintenance and curation of the DB were accompanied by dedicated diffusion and communication channels that make the SEVA platform a popular resource for genetic analyses, genome editing and bioengineering of a large number of microorganisms.


Bacteria , Databases, Factual , Bacteria/genetics , Cloning, Molecular , DNA , Genetic Vectors , Phenotype , Plasmids/genetics
5.
ACS Synth Biol ; 11(10): 3440-3450, 2022 10 21.
Article En | MEDLINE | ID: mdl-36206506

Engineering of bacterial genomes is a fundamental craft in contemporary biotechnology. The ability to precisely edit chromosomes allows for the development of cells with specific phenotypes for metabolic engineering and for the creation of minimized genomes. Genetic tools are needed to select for cells that underwent editing, and dual-selection markers that enable both positive and negative selection are highly useful. Here, we present an optimized and easy-to-use version of the tetA dual-selection marker and demonstrate how this tetAOPT can be used efficiently to engineer at different stages of the central dogma of molecular biology. On the DNA level, tetAOPT can be used to create scarless knockouts across the Escherichia coli genome with efficiency above 90%, whereas recombinant gene integrations can be achieved with approximately 50% efficiency. On the RNA and protein level, we show that tetAOPT enables advanced genome engineering of both gene translation and transcription by introducing sequence variation in the translation initiation region or by exchanging promoters. Finally, we demonstrate the use of tetAOPT for genome engineering in the industrially relevant probiotic strain E. coli Nissle.


Escherichia coli , Recombination, Genetic , Escherichia coli/genetics , Genome, Bacterial/genetics , DNA , RNA , Genetic Engineering , Gene Editing
6.
IUCrJ ; 9(Pt 5): 666-681, 2022 Sep 01.
Article En | MEDLINE | ID: mdl-36071795

The recently discovered lytic polysaccharide monooxygenases (LPMOs) are Cu-containing enzymes capable of degrading polysaccharide substrates oxidatively. The generally accepted first step in the LPMO reaction is the reduction of the active-site metal ion from Cu2+ to Cu+. Here we have used a systematic diffraction data collection method to monitor structural changes in two AA9 LPMOs, one from Lentinus similis (LsAA9_A) and one from Thermoascus auranti-acus (TaAA9_A), as the active-site Cu is photoreduced in the X-ray beam. For LsAA9_A, the protein produced in two different recombinant systems was crystallized to probe the effect of post-translational modifications and different crystallization conditions on the active site and metal photoreduction. We can recommend that crystallographic studies of AA9 LPMOs wishing to address the Cu2+ form use a total X-ray dose below 3 × 104 Gy, while the Cu+ form can be attained using 1 × 106 Gy. In all cases, we observe the transition from a hexa-coordinated Cu site with two solvent-facing ligands to a T-shaped geometry with no exogenous ligands, and a clear increase of the θ2 parameter and a decrease of the θ3 parameter by averages of 9.2° and 8.4°, respectively, but also a slight increase in θT. Thus, the θ2 and θ3 parameters are helpful diagnostics for the oxidation state of the metal in a His-brace protein. On binding of cello-oligosaccharides to LsAA9_A, regardless of the production source, the θT parameter increases, making the Cu site less planar, while the active-site Tyr-Cu distance decreases reproducibly for the Cu2+ form. Thus, the θT increase found on copper reduction may bring LsAA9_A closer to an oligosaccharide-bound state and contribute to the observed higher affinity of reduced LsAA9_A for cellulosic substrates.

7.
Biomolecules ; 12(2)2022 01 24.
Article En | MEDLINE | ID: mdl-35204695

Lytic Polysaccharide Monooxygenases (LPMOs) oxidatively cleave recalcitrant polysaccharides. The mechanism involves (i) reduction of the Cu, (ii) polysaccharide binding, (iii) binding of different oxygen species, and (iv) glycosidic bond cleavage. However, the complete mechanism is poorly understood and may vary across different families and even within the same family. Here, we have investigated the protonation state of a secondary co-ordination sphere histidine, conserved across AA9 family LPMOs that has previously been proposed to be a potential proton donor. Partial unrestrained refinement of newly obtained higher resolution data for two AA9 LPMOs and re-refinement of four additional data sets deposited in the PDB were carried out, where the His was refined without restraints, followed by measurements of the His ring geometrical parameters. This allowed reliable assignment of the protonation state, as also validated by following the same procedure for the His brace, for which the protonation state is predictable. The study shows that this histidine is generally singly protonated at the Nε2 atom, which is close to the oxygen species binding site. Our results indicate robustness of the method. In view of this and other emerging evidence, a role as proton donor during catalysis is unlikely for this His.


Histidine , Mixed Function Oxygenases , Binding Sites , Histidine/chemistry , Humans , Mixed Function Oxygenases/metabolism , Polysaccharides/chemistry
8.
ACS Synth Biol ; 11(1): 241-253, 2022 01 21.
Article En | MEDLINE | ID: mdl-34982550

Antibiotic resistance cassettes are indispensable tools in recombinant DNA technology, synthetic biology, and metabolic engineering. The genetic cassette encoding the TEM-1 ß-lactamase (denoted Tn3.1) is one of the most commonly used and can be found in more than 120 commercially available bacterial expression plasmids (e.g., the pET, pUC, pGEM, pQE, pGEX, pBAD, and pSEVA series). A widely acknowledged problem with the cassette is that it produces excessively high titers of ß-lactamase that rapidly degrade ß-lactam antibiotics in the culture media, leading to loss of selective pressure, and eventually a large percentage of cells that do not have a plasmid. To address these shortcomings, we have engineered a next-generation version that expresses minimal levels of ß-lactamase (denoted Tn3.1MIN). We have also engineered a version that is compatible with the Standard European Vector Architecture (SEVA) (denoted Ap (pSEVA#1MIN--)). Expression plasmids containing either Tn3.1MIN or Ap (pSEVA#1MIN--) can be selected using a 5-fold lower concentration of ß-lactam antibiotics and benefit from the increased half-life of the ß-lactam antibiotics in the culture medium (3- to 10-fold). Moreover, more cells in the culture retain the plasmid. In summary, we present two antibiotic-efficient genetic cassettes encoding the TEM-1 ß-lactamase that reduce antibiotic consumption (an integral part of antibiotic stewardship), reduce production costs, and improve plasmid performance in bacterial cell factories.


Anti-Bacterial Agents , Plasmids , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Plasmids/genetics , beta-Lactamases/genetics
9.
ACS Synth Biol ; 10(12): 3278-3289, 2021 12 17.
Article En | MEDLINE | ID: mdl-34793671

Versatile DNA assembly standards and compatible, well-characterized part libraries are essential tools for creating effective designs in synthetic biology. However, to date, vector standards for Gram-positive hosts have limited flexibility. As a result, users often revert to PCR-based methods for building the desired genetic constructs. These methods are inherently prone to introducing mutations, which is problematic considering vector backbone parts are often left unsequenced in cloning workflows. To circumvent this, we present the ProUSER2.0 toolbox: a standardized vector platform for building both integrative and replicative shuttle vectors forBacillus subtilis. The ProUSER2.0 vectors consist of a ProUSER cassette for easy and efficient insertion of cargo sequences and six exchangeable modules. Furthermore, the standard is semicompatible with several previously developed standards, allowing the user to utilize the parts developed for these. To provide parts for the toolbox, seven novel integration sites and six promoters were thoroughly characterized in B. subtilis. Finally, the capacity of the ProUSER2.0 system was demonstrated through the construction of signal peptide libraries for two industrially relevant proteins. Altogether, the ProUSER2.0 toolbox is a powerful and flexible framework for use in B. subtilis.


Bacillus subtilis , Synthetic Biology , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Cloning, Molecular , Genetic Vectors/genetics , Plasmids/genetics , Promoter Regions, Genetic/genetics , Synthetic Biology/methods
10.
mBio ; 12(5): e0202821, 2021 10 26.
Article En | MEDLINE | ID: mdl-34700380

How do hierarchical gene regulation networks evolve in bacteria? Nucleoid-associated proteins (NAPs) influence the overall structure of bacterial genomes, sigma factors and global transcription factors (TFs) control thousands of genes, and many operons are regulated by highly specific TFs that in turn are controlled allosterically by cellular metabolites. These regulatory hierarchies have been shaped by millions of years of evolution to optimize fitness in response to changing environmental conditions, but it is unclear how NAPs and TFs relate and have evolved together. Cyclic AMP (cAMP) receptor protein (Crp) is the paradigmatic global TF in Escherichia coli, and here we report that mutations in the topA gene compensate for loss of cAMP, showing that the interplay between Crp and the supercoiling status of promoters is key to global stress response. Furthermore, we observed an effect of apoCrp on gene expression in the absence of its effector cAMP. This provides support for the proposed NAP-like role for Crp, suggesting that it represents an intermediate point in the evolution of a ligand-controlled TF from a NAP. IMPORTANCE Here we report that mutations in the topA gene compensate for loss of cAMP, showing that the interplay between Crp and the supercoiling status of promoters is key to global stress response. Furthermore, we observed an effect of apoCrp on gene expression in the absence of its effector cAMP. This provides support for the proposed NAP-like role for Crp, suggesting that it represents an intermediate point in the evolution of a ligand-controlled TF from a NAP.


Cyclic AMP Receptor Protein/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Cyclic AMP/metabolism , Cyclic AMP Receptor Protein/genetics , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Regulatory Networks
11.
Nat Commun ; 12(1): 5880, 2021 10 07.
Article En | MEDLINE | ID: mdl-34620864

The evolution of microorganisms often involves changes of unclear relevance, such as transient phenotypes and sequential development of multiple adaptive mutations in hotspot genes. Previously, we showed that ageing colonies of an E. coli mutant unable to produce cAMP when grown on maltose, accumulated mutations in the crp gene (encoding a global transcription factor) and in genes involved in pyrimidine metabolism such as cmk; combined mutations in both crp and cmk enabled fermentation of maltose (which usually requires cAMP-mediated Crp activation for catabolic pathway expression). Here, we study the sequential generation of hotspot mutations in those genes, and uncover a regulatory role of pyrimidine nucleosides in carbon catabolism. Cytidine binds to the cytidine regulator CytR, modifies the expression of sigma factor 32 (RpoH), and thereby impacts global gene expression. In addition, cytidine binds and activates a Crp mutant directly, thus modulating catabolic pathway expression, and could be the catabolite modulating factor whose existence was suggested by Jacques Monod and colleagues in 1976. Therefore, transcription factor Crp appears to work in concert with CytR and RpoH, serving a dual role in sensing both carbon availability and metabolic flux towards DNA and RNA. Our findings show how certain alterations in metabolite concentrations (associated with colony ageing and/or due to mutations in metabolic or regulatory genes) can drive the evolution in non-growing cells.


Cyclic AMP Receptor Protein/genetics , Cyclic AMP Receptor Protein/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Evolution, Molecular , Pyrimidines/metabolism , DNA, Bacterial , Escherichia coli/growth & development , Gene Expression Regulation, Bacterial , Genes, Bacterial , Heat-Shock Proteins , Metabolic Networks and Pathways/genetics , Mutation , Phenotype , Repressor Proteins/metabolism , Sigma Factor , Transcription Factors/metabolism
12.
Nat Commun ; 12(1): 5876, 2021 10 07.
Article En | MEDLINE | ID: mdl-34620865

Chromosomal recombinant gene expression offers a number of advantages over plasmid-based synthetic biology. However, the methods applied for bacterial genome engineering are still challenging and far from being standardized. Here, in an attempt to realize the simplest recombinant genome technology imaginable and facilitate the transition from recombinant plasmids to genomes, we create a simplistic methodology and a comprehensive strain collection called the Standardized Genome Architecture (SEGA). In its simplest form, SEGA enables genome engineering by combining only two reagents: a DNA fragment that can be ordered from a commercial vendor and a stock solution of bacterial cells followed by incubation on agar plates. Recombinant genomes are identified by visual inspection using green-white colony screening akin to classical blue-white screening for recombinant plasmids. The modular nature of SEGA allows precise multi-level control of transcriptional, translational, and post-translational regulation. The SEGA architecture simultaneously supports increased standardization of genetic designs and a broad application range by utilizing well-characterized parts optimized for robust performance in the context of the bacterial genome. Ultimately, its adaption and expansion by the scientific community should improve predictability and comparability of experimental outcomes across different laboratories.


Bacteria/genetics , Genetic Engineering/methods , Genome, Bacterial , Synthetic Biology/methods , Chromosomes , Escherichia coli/genetics , Flow Cytometry/methods , Gene Expression Regulation, Bacterial , Genetic Vectors , Plasmids , Promoter Regions, Genetic , Recombination, Genetic , Reference Standards
13.
Microb Biotechnol ; 14(6): 2566-2580, 2021 11.
Article En | MEDLINE | ID: mdl-34405535

Secreted proteins and peptides hold large potential both as therapeutics and as enzyme catalysts in biotechnology. The high stability of many secreted proteins helps maintain functional integrity in changing chemical environments and is a contributing factor to their commercial potential. Disulphide bonds constitute an important post-translational modification that stabilizes many of these proteins and thus preserves the active state under chemically stressful conditions. Despite their importance, the discovery and applications within this group of proteins and peptides are limited by the availability of synthetic biology tools and heterologous production systems that allow for efficient formation of disulphide bonds. Here, we refine the design of two DisCoTune (Disulphide bond formation in E. coli with tunable expression) plasmids that enable the formation of disulphides in the highly popular Escherichia coli T7 protein production system. We show that this new system promotes significantly higher yield and activity of an industrial protease and a conotoxin, which belongs to a group of disulphide-rich venom peptides from cone snails with strong potential as research tools and pharmacological agents.


Disulfides , Escherichia coli , Escherichia coli/genetics , Peptides/genetics , Plasmids/genetics , Protein Folding
14.
Commun Biol ; 4(1): 963, 2021 08 12.
Article En | MEDLINE | ID: mdl-34385596

Gene expression toxicity is an important biological phenomenon and a major bottleneck in biotechnology. Escherichia coli BL21(DE3) is the most popular choice for recombinant protein production, and various derivatives have been evolved or engineered to facilitate improved yield and tolerance to toxic genes. However, previous efforts to evolve BL21, such as the Walker strains C41 and C43, resulted only in decreased expression strength of the T7 system. This reveals little about the mechanisms at play and constitutes only marginal progress towards a generally higher producing cell factory. Here, we restrict the solution space for BL21(DE3) to evolve tolerance and isolate a mutant strain Evo21(DE3) with a truncation in the essential RNase E. This suggests that RNA stability plays a central role in gene expression toxicity. The evolved rne truncation is similar to a mutation previously engineered into the commercially available BL21Star(DE3), which challenges the existing assumption that this strain is unsuitable for expressing toxic proteins. We isolated another dominant mutation in a presumed substrate binding site of RNase E that improves protein production further when provided as an auxiliary plasmid. This makes it easy to improve other BL21 variants and points to RNases as prime targets for cell factory optimisation.


Escherichia coli/chemistry , Gene Expression , RNA Stability , RNA, Bacterial/chemistry , Mutation
15.
Microb Cell Fact ; 20(1): 93, 2021 May 01.
Article En | MEDLINE | ID: mdl-33933097

Poly(ethylene terephthalate) (PET) is the world's most abundant polyester plastic, and its ongoing accumulation in nature is causing a global environmental problem. Currently, the main recycling processes utilize thermomechanical or chemical means, resulting in the deterioration of the mechanical properties of PET. Consequently, polluting de novo synthesis remains preferred, creating the need for more efficient and bio-sustainable ways to hydrolyze the polymer. Recently, a PETase enzyme from the bacterium Ideonella sakaiensis was shown to facilitate PET biodegradation, albeit at slow rate. Engineering of more efficient PETases is required for industrial relevance, but progress is currently hampered by the dependency on intracellular expression in Escherichia coli. To create a more efficient screening platform in E. coli, we explore different surface display anchors for fast and easy assaying of PETase activity. We show that PETases can be functionally displayed on the bacterial cell surface, enabling screening of enzyme activity on PET microparticles - both while anchored to the cell and following solubilization of the enzymes.


Biodegradation, Environmental , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Polyethylene Terephthalates/metabolism , Hydrolysis , Surface Properties
16.
ACS Synth Biol ; 10(4): 897-906, 2021 04 16.
Article En | MEDLINE | ID: mdl-33797234

Environmentally friendly sources of energy and chemicals are essential constituents of a sustainable society. An important step toward this goal is the utilization of biomass to supply building blocks for future biorefineries. Lytic polysaccharide monooxygenases (LPMOs) are enzymes that play a critical role in breaking the chemical bonds in the most abundant polymers found in recalcitrant biomass, such as cellulose and chitin. To use them in industrial processes they need to be produced in high titers in cell factories. Predicting optimal strategies for producing LPMOs is often nontrivial, and methods allowing for screening several strategies simultaneously are therefore needed. Here, we present a standardized platform for cloning LPMOs. The platform allows users to combine gene fragments with 14 different expression vectors in a simple 15 min reaction, thus enabling rapid exploration of several gene contexts, hosts, and expression strategies in parallel. The open-source LyGo platform is accompanied by easy-to-follow online protocols for both cloning and expression. As a demonstration of its utility, we explore different strategies for expressing several different LPMOs in Escherichia coli, Bacillus subtilis, and Komagataella phaffii.


Mixed Function Oxygenases/metabolism , Polysaccharides/metabolism , Bacillus subtilis/metabolism , Escherichia coli/metabolism , Saccharomycetales/metabolism
17.
FEBS Lett ; 595(12): 1708-1720, 2021 06.
Article En | MEDLINE | ID: mdl-33896006

The histidine brace (His-brace) is a copper-binding motif that is associated with both oxidative enzymes and proteinaceous copper chaperones. Here, we used biochemical and structural methods to characterize mutants of a His-brace-containing copper chaperone from Pseudomonas fluorescens (PfCopC). A total of 15 amino acid variants in primary and second-sphere residues were produced and characterized in terms of their copper binding and redox properties. PfCopC has a very high affinity for Cu(II) and also binds Cu(I). A high reorganization barrier likely prevents redox cycling and, thus, catalysis. In contrast, mutations in the conserved second-sphere Glu27 enable slow oxidation of ascorbate. The crystal structure of the variant E27A confirmed copper binding at the His-brace. Unexpectedly, Asp83 at the equatorial position was shown to be indispensable for Cu(II) binding in the His-brace of PfCopC. A PfCopC mutant that was designed to mimic the His-brace from lytic polysaccharide monooxygenase-like family X325 did not bind Cu(II), but was still able to bind Cu(I). These results highlight the importance of the proteinaceous environment around the copper His-brace for reactivity and, thus, the difference between enzyme and chaperone.


Amino Acid Substitution , Bacterial Proteins/chemistry , Copper/chemistry , Molecular Chaperones/chemistry , Mutation, Missense , Pseudomonas fluorescens/chemistry , Amino Acid Motifs , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Copper/metabolism , Histidine/chemistry , Histidine/genetics , Histidine/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/metabolism
18.
Biotechnol Biofuels ; 14(1): 51, 2021 Feb 27.
Article En | MEDLINE | ID: mdl-33640002

BACKGROUND: Lytic polysaccharide monooxygenases (LPMOs) are important industrial enzymes known for their catalytic degradation of recalcitrant polymers such as cellulose or chitin. Their activity can be measured by lengthy HPLC methods, while high-throughput methods are less specific. A fast and specific LPMO assay would simplify screening for new or engineered LPMOs and accelerate biochemical characterization. RESULTS: A novel LPMO activity assay was developed based on the production of the dye phenolphthalein (PHP) from its reduced counterpart (rPHP). The colour response of rPHP oxidisation catalysed by the cellulose-specific LPMO from Thermoascus aurantiacus (TaAA9A), was found to increase tenfold by adding dehydroascorbate (DHA) as a co-substrate. The assay using a combination of rPHP and DHA was tested on 12 different metallo-enzymes, but only the LPMOs catalysed this reaction. The assay was optimized for characterization of TaAA9A and showed a sensitivity of 15 nM after 30 min incubation. It followed apparent Michaelis-Menten kinetics with kcat = 0.09 s-1 and KM = 244 µM, and the assay was used to confirm stoichiometric copper-enzyme binding and enzyme unfolding at a temperature of approximately 60 °C. DHA, glutathione and fructose were found to enhance LPMO oxidation of rPHP and in the optimized assay conditions these co-substrates also enabled cellulose degradation. CONCLUSIONS: This novel and specific LPMO assay can be carried out in a convenient microtiter plate format ready for high-throughput screening and enzyme characterization. DHA was the best co-substrate tested for oxidation of rPHP and this preference appears to be LPMO-specific. The identified co-substrates DHA and fructose are not normally considered as LPMO co-substrates but here they are shown to facilitate both oxidation of rPHP and degradation of cellulose. This is a rare example of a finding from a high-throughput assay that directly translate into enzyme activity on an insoluble substrate. The rPHP-based assay thus expands our understanding of LPMO catalysed reactions and has the potential to characterize LPMO activity in industrial settings, where usual co-substrates such as ascorbate and oxygen are depleted.

19.
Sci Rep ; 10(1): 16369, 2020 10 01.
Article En | MEDLINE | ID: mdl-33004835

Lytic polysaccharide monooxygenase (LPMO) and copper binding protein CopC share a similar mononuclear copper site. This site is defined by an N-terminal histidine and a second internal histidine side chain in a configuration called the histidine brace. To understand better the determinants of reactivity, the biochemical and structural properties of a well-described cellulose-specific LPMO from Thermoascus aurantiacus (TaAA9A) is compared with that of CopC from Pseudomonas fluorescens (PfCopC) and with the LPMO-like protein Bim1 from Cryptococcus neoformans. PfCopC is not reduced by ascorbate but is a very strong Cu(II) chelator due to residues that interacts with the N-terminus. This first biochemical characterization of Bim1 shows that it is not redox active, but very sensitive to H2O2, which accelerates the release of Cu ions from the protein. TaAA9A oxidizes ascorbate at a rate similar to free copper but through a mechanism that produce fewer reactive oxygen species. These three biologically relevant examples emphasize the diversity in how the proteinaceous environment control reactivity of Cu with O2.


Copper/metabolism , Histidine/metabolism , Models, Molecular , Oxygenases/metabolism , Escherichia coli , Hydrogen Peroxide/metabolism , Magnetic Resonance Spectroscopy/methods , Oxidation-Reduction
20.
Microb Cell Fact ; 19(1): 85, 2020 Apr 07.
Article En | MEDLINE | ID: mdl-32264894

BACKGROUND: Recombinant proteins are often engineered with an N-terminal signal peptide, which facilitates their secretion to the oxidising environment of the periplasm (gram-negative bacteria) or the culture supernatant (gram-positive bacteria). A commonly encountered problem is that the signal peptide influences the synthesis and secretion of the recombinant protein in an unpredictable manner. A molecular understanding of this phenomenon is highly sought after, as it could lead to improved methods for producing recombinant proteins in bacterial cell factories. RESULTS: Herein we demonstrate that signal peptides contribute to an unpredictable translation initiation region. A directed evolution approach that selects a new translation initiation region, whilst leaving the amino acid sequence of the signal peptide unchanged, can increase production levels of secreted recombinant proteins. The approach can increase production of single chain antibody fragments, hormones and other recombinant proteins in the periplasm of E. coli. CONCLUSIONS: The study demonstrates that signal peptide performance is coupled to the efficiency of the translation initiation region.


Escherichia coli/metabolism , Protein Processing, Post-Translational/physiology , Recombinant Proteins/metabolism
...