Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0147622, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36943043

RESUMEN

The increasing occurrence of drought is a global challenge that threatens food security through direct impacts to both plants and their interacting soil microorganisms. Plant growth promoting microbes are increasingly being harnessed to improve plant performance under stress. However, the magnitude of microbiome impacts on both structural and physiological plant traits under water limited and water replete conditions are not well-characterized. Using two microbiomes sourced from a ponderosa pine forest and an agricultural field, we performed a greenhouse experiment that used a crossed design to test the individual and combined effects of the water availability and the soil microbiome composition on plant performance. Specifically, we studied the structural and leaf functional traits of maize that are relevant to drought tolerance. We further examined how microbial relationships with plant phenotypes varied under different combinations of microbial composition and water availability. We found that water availability and microbial composition affected plant structural traits. Surprisingly, they did not alter leaf function. Maize grown in the forest-soil microbiome produced larger plants under well-watered and water-limited conditions, compared to an agricultural soil community. Although leaf functional traits were not significantly different between the watering and microbiome treatments, the bacterial composition and abundance explained significant variability in both plant structure and leaf function within individual treatments, especially water-limited plants. Our results suggest that bacteria-plant interactions that promote plant performance under stress depend upon the greater community composition and the abiotic environment. IMPORTANCE Globally, drought is an increasingly common and severe stress that causes significant damage to agricultural and wild plants, thereby threatening food security. Despite growing evidence of the potential benefits of soil microorganisms on plant performance under stress, decoupling the effects of the microbiome composition versus the water availability on plant growth and performance remains a challenge. We used a highly controlled and replicated greenhouse experiment to understand the impacts of microbial community composition and water limitation on corn growth and drought-relevant functions. We found that both factors affected corn growth, and, interestingly, that individual microbial relationships with corn growth and leaf function were unique to specific watering/microbiome treatment combinations. This finding may help explain the inconsistent success of previously identified microbial inocula in improving plant performance in the face of drought, outside controlled environments.

2.
Artículo en Inglés | MEDLINE | ID: mdl-31108321

RESUMEN

Urinary metabolomics offers a non-invasive means of obtaining information about the system-wide biological health of a patient. Untargeted metabolomics approaches using one-dimensional gas chromatography (GC) are limited due to the chemical complexity of urine, which poorly detects co-eluting low-abundance analytes. Metabolite detection and identification can be improved by applying comprehensive two-dimensional GC, allowing for the discovery of additional viable biomarkers of disease. In this work, we applied comprehensive two-dimensional GC coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) to the analysis of urine samples collected daily across 28-days from 10 healthy female subjects for a personalized approach to female reproductive health monitoring. Through this analysis, we identified 935 unique volatile metabolites. Two statistical methods, a modified T-statistic and Wilcoxon Rank Sum, were applied to analyze differences in metabolome abundance on ovulation days as compared to non-ovulation days. Four metabolites (2-pentanone, 3-penten-2-one, carbon disulfide, acetone) were identified as statistically significant by the modified T-statistic but not the Rank Sum, after a false-discovery rate of 0.1 was set using a Benjamini-Hochberg correction. Subsequent analyses by boxplot indicated that the putative volatile metabolic biomarkers for fertility are expressed in increased or decreased abundance in urine on the day of ovulation. Individual analysis of metabolome expression across 28-days revealed some subject-specific features, which suggest a potential for long-term, personalized fertility monitoring using metabolomics.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Ciclo Menstrual/metabolismo , Metaboloma/fisiología , Metabolómica/métodos , Acetona/orina , Adolescente , Adulto , Biomarcadores/orina , Disulfuro de Carbono/orina , Femenino , Humanos , Ciclo Menstrual/orina , Ovulación/metabolismo , Pentanonas/orina , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...