Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 674: 379-391, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38941932

RESUMEN

Protein emulsifiers play an important role in formulation science, from food product development to emerging applications in biotechnologies. The impact of mixed protein assemblies on surface composition and interfacial shear mechanics remains broadly unexplored, in comparison to the impact that formulation has on dilatational mechanics and surface tension or pressure. In this report, we use interfacial shear rheology to quantify the evolution of interfacial shear moduli as a function of composition in bovine serum albumin (BSA)/ß-casein mixed assemblies. We present the pronounced difference in mechanics of these two protein, at oil interfaces, and observe the dominance of ß-casein in regulating interfacial shear mechanics. This observation correlates well with the strong asymmetry of adsorption of these two proteins, characterised by fluorescence microscopy. Using neutron reflectometry and fluorescence recovery after photobleaching, we examine the architecture of corresponding protein assemblies and their surface diffusion, providing evidence for distinct morphologies, but surprisingly comparable diffusion profiles. Finally, we explore the impact of crosslinking and sequential protein adsorption on the interfacial shear mechanics of corresponding assemblies. Overall, this work indicates that, despite comparable surface densities, BSA and ß-casein assemblies at liquid-liquid interfaces display almost 2 orders of magnitude difference in interfacial shear storage modulus and markedly different viscoelastic profiles. In addition, co-adsorption and sequential adsorption processes are found to further modulate interfacial shear mechanics. Beyond formulation science, the understanding of complex mixed protein assemblies and mechanics may have implications for the stability of emulsions and may underpin changes in the mechanical strength of corresponding interfaces, for example in tissue culture or in physiological conditions.

2.
ACS Appl Bio Mater ; 7(5): 3033-3040, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38587908

RESUMEN

Regenerative medicine based on cell therapy has emerged as a promising approach for the treatment of various medical conditions. However, the success of cell therapy heavily relies on the development of suitable injectable hydrogels that can encapsulate cells and provide a conducive environment for their survival, proliferation, and tissue regeneration. Herein, we address the medical need for cyto- and biocompatible injectable hydrogels by reporting on the synthesis of a hydrogel-forming thermosensitive copolymer. The copolymer was synthesized by grafting poly(N-isopropylacrylamide-co-carboxymethyl acrylate) (PNIPAM-COOH) onto chitosan through amide coupling. This chemical modification resulted in the formation of hydrogels that exhibit a sol-gel transition with an onset at approximately 27 °C, making them ideal for use in injectable applications. The hydrogels supported the survival and proliferation of cells for several days, which is critical for cell encapsulation. Furthermore, the study evaluates the addition of collagen/chitosan hybrid microspheres to support the adhesion of mesenchymal stem cells within the hydrogels. Altogether, these results demonstrate the potential of the PNIPAM-chitosan thermogel for cell encapsulation and its possible applications in regenerative medicine.


Asunto(s)
Resinas Acrílicas , Materiales Biocompatibles , Quitosano , Hidrogeles , Ensayo de Materiales , Células Madre Mesenquimatosas , Microesferas , Quitosano/química , Resinas Acrílicas/química , Resinas Acrílicas/síntesis química , Hidrogeles/química , Hidrogeles/síntesis química , Hidrogeles/farmacología , Células Madre Mesenquimatosas/citología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos
3.
Biomed Mater ; 18(3)2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36808917

RESUMEN

Bioemulsions are attractive platforms for the expansion of adherent cells in bioreactors. Their design relies on the self-assembly of protein nanosheets at liquid-liquid interfaces, displaying strong interfacial mechanical properties and promoting integrin-mediated cell adhesion. However, most systems developed to date have focused on fluorinated oils, which are unlikely to be accepted for direct implantation of resulting cell products for regenerative medicine, and protein nanosheets self-assembly at other interfaces has not been investigated. In this report, the composition of aliphatic pro-surfactants palmitoyl chloride and sebacoyl chloride, on the assembly kinetics of poly(L-lysine) at silicone oil interfaces and characterisation of ultimate interfacial shear mechanics and viscoelasticity is presented. The impact of the resulting nanosheets on the adhesion of mesenchymal stem cells (MSCs) is investigated via immunostaining and fluorescence microscopy, demonstrating the engagement of the classic focal adhesion-actin cytoskeleton machinery. The ability of MSCs to proliferate at the corresponding interfaces is quantified. In addition, expansion of MSCs at other non-fluorinated oil interfaces, based on mineral and plant-based oils is investigated. Finally, the proof-of-concept of such non-fluorinated oil systems for the formulation of bioemulsions supporting stem cell adhesion and expansion is demonstrated.


Asunto(s)
Células Madre Mesenquimatosas , Siliconas , Adhesión Celular , Proteínas/metabolismo , Aceites/metabolismo , Minerales/metabolismo
4.
Int J Pharm X ; 4: 100130, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36156982

RESUMEN

Proteins are great therapeutic candidates as endogenous biomolecules providing a wide range of applications. However, their delivery suffers from some limitations and specifically designed delivery systems having an efficient protein anchoring and delivery strategy are still needed. In this work, we propose to combine large pore stellate mesoporous silica (STMS) with isobutyramide (IBAM), as a "glue" molecule which has been shown promising for immobilization of various biomacromolecules at silica surface. We address here for the first time the ability of such IBAM-modified NPs to sustainably deliver proteins over a prolonged time. In this work, a quantitative loading study of proteins (serum albumin (HSA), peroxidase (HRP), immunoglobulin (IgG) and polylysine (PLL)) on STMS@IBAM is first presented using three complementary detection techniques to ensure precision and avoid protein quantification issues. The results demonstrated a high loading capacity for HSA and HRP (≥ ca. 350 µg.mg-1) but a moderate one for IgG and PLL. After evaluating the physicochemical properties of the loaded particles and their stability over scaling-up and washings, the ability of STMS@IBAM to release proteins over prolonged time was evaluated in equilibrium (static) and flow mimicking (dynamic) conditions and at different temperatures (25, 37, 45 °C). Results show not only the potential of such "glue" functionalized STMS to release proteins in a sustained way, but also the retention of the biological activity of immobilized and released HRP, used as an enzyme model. Finally, an AFM-force spectroscopy study was conducted to decipher the interactions between IBAM and proteins, showing the involvement of different interactions in the adsorption and release processes.

5.
Pathogens ; 11(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35215171

RESUMEN

Caused by two blood parasites, Babesia caballi and Theileria equi, equine piroplasmosis is a tick-borne disease that poses major health and economic issues for the equine industry. Our objective was to gain insight into the spatio-temporal variations of parasite circulation in France, where the disease is known to be enzootic, but has been the subject of few studies. Seroprevalence was assessed for each parasite thanks to 16,127 equine sera obtained between 1997 and 2003 from all over France and analysed through complement fixation tests. Results indicated that 13.2% (5-27% depending on the region) of horses were seropositive for T. equi and 9.5% (3-25%) for B. caballi. Regardless of the year, horses from the southern regions of France were the most affected by B. caballi or T. equi infection, while the proportion of horses having antibodies against T. equi increased over time. These results highlight the heterogeneity of the circulation of both piroplasms, which may be linked with ecological diversity and vector distribution. Our data provide baseline information regarding the sero-epidemiology of B. caballi and T. equi infection in horses in France, making it now possible to select regions for future studies on risk factors, and design and implement effective targeted measures against equine piroplasms.

6.
Transbound Emerg Dis ; 69(5): 2474-2498, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34333863

RESUMEN

When studying a vector-borne disease, an eco-epidemiological approach is vital for a comprehensive understanding of how the pathogen circulates amongst populations. Equine piroplasmosis (EP), a tick-borne disease caused by the protozoans Babesia caballi and Theileria equi, is endemic in the Mediterranean basin of Europe and causes both animal health and economic issues for the equine sector. With no vaccine available, defining the episystem of the disease can help to identify which components of the host-pathogen-vector-environment system to target to improve preventive measures. In this systematic literature review, we collected relevant data on the eco-epidemiology of EP in Europe. The 62 studies remaining after the selection procedure explored potential vectors, indicators of parasite circulation and putative risk factors of EP. Eight hard tick species were identified as potential vectors of one or both piroplasm species. Meta-analyses were then conducted on prevalence and seroprevalence data in equids in European countries, demonstrating an estimated seroprevalence of 30% and 8% and prevalence of 25% and 2% for T. equi and B. caballi, respectively. Finally, herd management practices and environmental risk factors analysed in studies showed no real consensus between studies, but revealed a general trend highlighting age and exposure to ticks as risk factors, and vaccination as a protective factor. Through this study, we point out that only a few studies have focused on disease management practices and even fewer have studied the effect of environmental parameters on equid infections. Further investigation in these areas is required to better characterize the eco-epidemiology of EP and risk factors associated with this disease.


Asunto(s)
Babesiosis , Enfermedades de los Bovinos , Enfermedades de los Caballos , Theileria , Theileriosis , Garrapatas , Animales , Babesiosis/epidemiología , Babesiosis/parasitología , Bovinos , Europa (Continente)/epidemiología , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/parasitología , Caballos , Prevalencia , Estudios Seroepidemiológicos , Theileriosis/epidemiología , Theileriosis/parasitología , Garrapatas/parasitología
7.
Pathogens ; 10(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34832559

RESUMEN

Babesiosis is one of the most important tick-borne diseases in veterinary health, impacting mainly cattle, equidae, and canidae, and limiting the development of livestock industries worldwide. In humans, babesiosis is considered to be an emerging disease mostly due to Babesia divergens in Europe and Babesia microti in America. Despite this importance, our knowledge of Babesia sp. transmission by ticks is incomplete. The complexity of vectorial systems involving the vector, vertebrate host, and pathogen, as well as the complex feeding biology of ticks, may be part of the reason for the existing gaps in our knowledge. Indeed, this complexity renders the implementation of experimental systems that are as close as possible to natural conditions and allowing the study of tick-host-parasite interactions, quite difficult. However, it is unlikely that the development of more effective and sustainable control measures against babesiosis will emerge unless significant progress can be made in understanding this tripartite relationship. The various methods used to date to achieve tick transmission of Babesia spp. of medical and veterinary importance under experimental conditions are reviewed and discussed here.

8.
Molecules ; 26(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673084

RESUMEN

The controlled design of robust, well reproducible, and functional nanomaterials made according to simple processes is of key importance to envision future applications. In the field of porous materials, tuning nanoparticle features such as specific area, pore size and morphology by adjusting simple parameters such as pH, temperature or solvent is highly needed. In this work, we address the tunable control of the pore morphology of mesoporous silica (MS) nanoparticles (NPs) with the sol-gel reaction temperature (Tsg). We show that the pore morphology of MS NPs alone or of MS shell covering iron oxide nanoparticles (IO NPs) can be easily tailored with Tsg orienting either towards stellar (ST) morphology (large radial pore of around 10 nm) below 80 °C or towards a worm-like (WL) morphology (small randomly oriented pores channel network, of 3-4 nm pore size) above 80 °C. The relaxometric and magnetothermal features of IO@STMS or IO@WLMS core shell NPs having respectively stellar or worm-like morphologies are compared and discussed to understand the role of the pore structure for MRI and magnetic hyperthermia applications.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Dióxido de Silicio/química , Concentración de Iones de Hidrógeno , Imagen por Resonancia Magnética , Nanopartículas/ultraestructura , Tamaño de la Partícula , Porosidad , Temperatura
9.
Artículo en Inglés | MEDLINE | ID: mdl-30502832

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are key players in immunosuppression mechanisms that lead to tumor escape and metastasis formation. Studies on these cells in many cancer types using human patients and murine models, have greatly increased since their discovery in 1980s. MDSCs are now defined as different subpopulations with specific phenotypes in mice and humans with clear immunosuppressive capacities, which are summarized in this review. Current knowledge on these cells have allowed comparative studies and MDSCs have also recently been identified in dogs. As in other species, canine MDSCs have immunosuppressive activities and their number is increased in blood of metastasis-bearing dogs. Circulating MDSCs could therefore represent a new biomarker for cancer progression in both veterinary and human medicine. Further characterization of these cells in other cancer-suffering animal species would also be of great interest.


Asunto(s)
Células Supresoras de Origen Mieloide/citología , Metástasis de la Neoplasia/diagnóstico , Neoplasias/veterinaria , Animales , Biomarcadores/sangre , Modelos Animales de Enfermedad , Perros , Humanos , Ratones , Fenotipo , Medicina Veterinaria/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...