Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Chem Lab Med ; 62(8): 1626-1635, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38332688

RESUMEN

OBJECTIVES: Multiple myeloma (MM) is a plasma cell malignancy characterized by a monoclonal expansion of plasma cells that secrete a characteristic M-protein. This M-protein is crucial for diagnosis and monitoring of MM in the blood of patients. Recent evidence has emerged suggesting that N-glycosylation of the M-protein variable (Fab) region contributes to M-protein pathogenicity, and that it is a risk factor for disease progression of plasma cell disorders. Current methodologies lack the specificity to provide a site-specific glycoprofile of the Fab regions of M-proteins. Here, we introduce a novel glycoproteogenomics method that allows detailed M-protein glycoprofiling by integrating patient specific Fab region sequences (genomics) with glycoprofiling by glycoproteomics. METHODS: Glycoproteogenomics was used for the detailed analysis of de novo N-glycosylation sites of M-proteins. First, Genomic analysis of the M-protein variable region was used to identify de novo N-glycosylation sites. Subsequently glycopeptide analysis with LC-MS/MS was used for detailed analysis of the M-protein glycan sites. RESULTS: Genomic analysis uncovered a more than two-fold increase in the Fab Light Chain N-glycosylation of M-proteins of patients with Multiple Myeloma compared to Fab Light Chain N-glycosylation of polyclonal antibodies from healthy individuals. Subsequent glycoproteogenomics analysis of 41 patients enrolled in the IFM 2009 clinical trial revealed that the majority of the Fab N-glycosylation sites were fully occupied with complex type glycans, distinguishable from Fc region glycans due to high levels of sialylation, fucosylation and bisecting structures. CONCLUSIONS: Together, glycoproteogenomics is a powerful tool to study de novo Fab N-glycosylation in plasma cell dyscrasias.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/metabolismo , Mieloma Múltiple/genética , Mieloma Múltiple/diagnóstico , Glicosilación , Proteómica/métodos , Espectrometría de Masas en Tándem , Glicoproteínas/metabolismo , Cromatografía Liquida , Proteínas de Mieloma/metabolismo , Proteínas de Mieloma/análisis
3.
Nat Chem Biol ; 18(8): 812-820, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35484434

RESUMEN

Drugs that target histone deacetylase (HDAC) entered the pharmacopoeia in the 2000s. However, some enigmatic phenotypes suggest off-target engagement. Here, we developed a quantitative chemical proteomics assay using immobilized HDAC inhibitors and mass spectrometry that we deployed to establish the target landscape of 53 drugs. The assay covers 9 of the 11 human zinc-dependent HDACs, questions the reported selectivity of some widely-used molecules (notably for HDAC6) and delineates how the composition of HDAC complexes influences drug potency. Unexpectedly, metallo-ß-lactamase domain-containing protein 2 (MBLAC2) featured as a frequent off-target of hydroxamate drugs. This poorly characterized palmitoyl-CoA hydrolase is inhibited by 24 HDAC inhibitors at low nanomolar potency. MBLAC2 enzymatic inhibition and knockdown led to the accumulation of extracellular vesicles. Given the importance of extracellular vesicle biology in neurological diseases and cancer, this HDAC-independent drug effect may qualify MBLAC2 as a target for drug discovery.


Asunto(s)
Histona Desacetilasas , Neoplasias , Descubrimiento de Drogas , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/química
4.
Nature ; 585(7826): 530-537, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32968259

RESUMEN

Post-translational modifications (PTMs) greatly expand the structures and functions of proteins in nature1,2. Although synthetic protein functionalization strategies allow mimicry of PTMs3,4, as well as formation of unnatural protein variants with diverse potential functions, including drug carrying5, tracking, imaging6 and partner crosslinking7, the range of functional groups that can be introduced remains limited. Here we describe the visible-light-driven installation of side chains at dehydroalanine residues in proteins through the formation of carbon-centred radicals that allow C-C bond formation in water. Control of the reaction redox allows site-selective modification with good conversions and reduced protein damage. In situ generation of boronic acid catechol ester derivatives generates RH2C• radicals that form the native (ß-CH2-γ-CH2) linkage of natural residues and PTMs, whereas in situ potentiation of pyridylsulfonyl derivatives by Fe(II) generates RF2C• radicals that form equivalent ß-CH2-γ-CF2 linkages bearing difluoromethylene labels. These reactions are chemically tolerant and incorporate a wide range of functionalities (more than 50 unique residues/side chains) into diverse protein scaffolds and sites. Initiation can be applied chemoselectively in the presence of sensitive groups in the radical precursors, enabling installation of previously incompatible side chains. The resulting protein function and reactivity are used to install radical precursors for homolytic on-protein radical generation; to study enzyme function with natural, unnatural and CF2-labelled post-translationally modified protein substrates via simultaneous sensing of both chemo- and stereoselectivity; and to create generalized 'alkylator proteins' with a spectrum of heterolytic covalent-bond-forming activity (that is, reacting diversely with small molecules at one extreme or selectively with protein targets through good mimicry at the other). Post-translational access to such reactions and chemical groups on proteins could be useful in both revealing and creating protein function.


Asunto(s)
Luz , Procesamiento Proteico-Postraduccional/efectos de la radiación , Proteínas/química , Proteínas/metabolismo , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Sitios de Unión , Carbono/química , Carbono/metabolismo , Enzimas/química , Enzimas/metabolismo , Ésteres/síntesis química , Ésteres/química , Células HeLa , Humanos , Hidrocarburos Fluorados/química , Hidrocarburos Fluorados/metabolismo , Indicadores y Reactivos/química , Oxidación-Reducción , Procesos Fotoquímicos/efectos de la radiación , Dominios y Motivos de Interacción de Proteínas
5.
J Med Chem ; 63(11): 5856-5864, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32420743

RESUMEN

Fragment-based drug discovery (FBDD) permits efficient sampling of the vast chemical space for hit identification. Libraries are screened biophysically and fragment:protein co-structures are determined by X-ray crystallography. In parallel, computational methods can derive pharmacophore models or screen virtual libraries. We screened 15 very small fragments (VSFs) (HA ≤ 11) computationally, using site identification by ligand competitive saturation (SILCS), and experimentally, by X-ray crystallography, to map potential interaction sites on the FKBP51 FK1 domain. We identified three hot spots and obtained 6 X-ray co-structures, giving a hit rate of 40%. SILCS FragMaps overlapped with X-ray structures. The compounds had millimolar affinities as determined by 15N HSQC NMR. VSFs identified the same interactions as known FK1 binder and provide new chemical starting points. We propose a hybrid screening strategy starting with SILCS, followed by a pharmacophore-derived X-ray screen and 15N HSQC NMR based KD determination to rapidly identify hits and their binding poses.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/química , Proteínas de Unión a Tacrolimus/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Dominios Proteicos , Bibliotecas de Moléculas Pequeñas/metabolismo , Proteínas de Unión a Tacrolimus/química
6.
Curr Opin Chem Biol ; 45: 35-47, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29501025

RESUMEN

Chromatin is the physiological template of genetic information in all eukaryotic cells, a highly organised complex of DNA and histone proteins central in regulating gene expression and genome organisation. A multitude of histone post-translational modifications (PTMs) have been discovered, providing a glance into the complex interplay of these epigenetic marks in cellular processes. In the last decade, synthetic and chemical biology techniques have emerged to study these modifications, including genetic code expansion, histone semisynthesis and post-translational chemical mutagenesis. These methods allow for the creation of histones carrying synthetic modifications which can in turn be assembled into designer nucleosomes. Their application in vitro and in vivo is now beginning to have an important impact on chromatin biology. Efforts towards introducing multiple labile modifications in histones as well as expanding their use in cellular biology promise new powerful tools to study epigenetics.


Asunto(s)
Histonas/química , Procesamiento Proteico-Postraduccional , Animales , Cromatina/química , Cromatina/genética , Código Genético , Código de Histonas , Histonas/síntesis química , Histonas/genética , Humanos , Modelos Moleculares , Mutagénesis , Nucleosomas/química , Nucleosomas/genética , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA