Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
eNeuro ; 11(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39227152

RESUMEN

Astrocytes are essential for the formation and maintenance of neural networks. However, a major technical challenge for investigating astrocyte function and disease-related pathophysiology has been the limited ability to obtain functional human astrocytes. Despite recent advances in human pluripotent stem cell (hPSC) techniques, primary rodent astrocytes remain the gold standard in coculture with human neurons. We demonstrate that a combination of leukemia inhibitory factor (LIF) and bone morphogenetic protein-4 (BMP4) directs hPSC-derived neural precursor cells to a highly pure population of astroglia in 28 d. Using single-cell RNA sequencing, we confirm the astroglial identity of these cells and highlight profound transcriptional adaptations in cocultured hPSC-derived astrocytes and neurons, consistent with their further maturation. In coculture with human neurons, multielectrode array recordings revealed robust network activity of human neurons in a coculture with hPSC-derived or rat astrocytes [3.63 ± 0.44 min-1 (hPSC-derived), 2.86 ± 0.64 min-1 (rat); p = 0.19]. In comparison, we found increased spike frequency within network bursts of human neurons cocultured with hPSC-derived astrocytes [56.31 ± 8.56 Hz (hPSC-derived), 24.77 ± 4.04 Hz (rat); p < 0.01], and whole-cell patch-clamp recordings revealed an increase of postsynaptic currents [2.76 ± 0.39 Hz (hPSC-derived), 1.07 ± 0.14 Hz (rat); p < 0.001], consistent with a corresponding increase in synapse density [14.90 ± 1.27/100 µm2 (hPSC-derived), 8.39 ± 0.63/100 µm2 (rat); p < 0.001]. Taken together, we show that hPSC-derived astrocytes compare favorably with rat astrocytes in supporting human neural network activity and maturation, providing a fully human platform for investigating astrocyte function and neuronal-glial interactions.


Asunto(s)
Astrocitos , Técnicas de Cocultivo , Neuronas , Células Madre Pluripotentes , Astrocitos/fisiología , Humanos , Animales , Células Madre Pluripotentes/fisiología , Ratas , Neuronas/fisiología , Células Cultivadas , Células-Madre Neurales/fisiología , Diferenciación Celular/fisiología
2.
J Clin Invest ; 134(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007270

RESUMEN

Copy number variation (CNV) at 7q11.23 causes Williams-Beuren syndrome (WBS) and 7q microduplication syndrome (7Dup), neurodevelopmental disorders (NDDs) featuring intellectual disability accompanied by symmetrically opposite neurocognitive features. Although significant progress has been made in understanding the molecular mechanisms underlying 7q11.23-related pathophysiology, the propagation of CNV dosage across gene expression layers and their interplay remains elusive. Here we uncovered 7q11.23 dosage-dependent symmetrically opposite dynamics in neuronal differentiation and intrinsic excitability. By integrating transcriptomics, translatomics, and proteomics of patient-derived and isogenic induced neurons, we found that genes related to neuronal transmission follow 7q11.23 dosage and are transcriptionally controlled, while translational factors and ribosomal genes are posttranscriptionally buffered. Consistently, we found phosphorylated RPS6 (p-RPS6) downregulated in WBS and upregulated in 7Dup. Surprisingly, p-4EBP was changed in the opposite direction, reflecting dosage-specific changes in total 4EBP levels. This highlights different dosage-sensitive dyregulations of the mTOR pathway as well as distinct roles of p-RPS6 and p-4EBP during neurogenesis. Our work demonstrates the importance of multiscale disease modeling across molecular and functional layers, uncovers the pathophysiological relevance of ribosomal biogenesis in a paradigmatic pair of NDDs, and uncouples the roles of p-RPS6 and p-4EBP as mechanistically actionable relays in NDDs.


Asunto(s)
Cromosomas Humanos Par 7 , Variaciones en el Número de Copia de ADN , Neuronas , Humanos , Neuronas/metabolismo , Neuronas/patología , Cromosomas Humanos Par 7/genética , Ribosomas/metabolismo , Ribosomas/genética , Neurogénesis/genética , Síndrome de Williams/genética , Síndrome de Williams/metabolismo , Síndrome de Williams/patología , Síndrome de Williams/fisiopatología , Proteína S6 Ribosómica/metabolismo , Proteína S6 Ribosómica/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Masculino , Diferenciación Celular , Femenino
3.
Stem Cell Res ; 79: 103481, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38924972

RESUMEN

GCDH encodes for the enzyme catalyzing the sixth step of the lysine degradation pathway. Autosomal recessive variants in GCDH are associated with glutaric aciduria type I (GA1), of which a wide genotypic spectrum of pathogenic variants have been described. In this study, hiPSC lines derived from four GA1 patients with different genotypes were generated and fully characterized. Two patients carry compound heterozygous variants in GCDH, while the other two patients carry a variant in homozygosis. These hiPSC lines can significantly contribute to better understand the molecular mechanism underlying GA1 and provide excellent models for the development of new therapeutic strategies.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Encefalopatías Metabólicas , Glutaril-CoA Deshidrogenasa , Células Madre Pluripotentes Inducidas , Humanos , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Glutaril-CoA Deshidrogenasa/deficiencia , Glutaril-CoA Deshidrogenasa/genética , Glutaril-CoA Deshidrogenasa/metabolismo , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/patología , Encefalopatías Metabólicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Femenino , Masculino , Alelos , Línea Celular
4.
Stem Cell Res ; 79: 103480, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936157

RESUMEN

ALDH7A1 encodes for the enzyme catalyzing the third step of the lysine degradation pathway. Biallelic pathogenic variants in ALDH7A1 are associated with pyridoxine dependent epilepsy (PDE), of which the c.1279G>C (p.Glu427Gln) variant is the most commonly reported variant and is carried by 30% of PDE patients with European ancestry. In this study, hiPSC lines derived from four PDE patients carrying the c.1279G>C variant in homozygosis in ALDH7A1 were generated and fully characterized. These hiPSC lines can contribute to better understand the molecular mechanism of disease underlying PDE as well as serving as a model system to evaluate new therapeutic strategies.


Asunto(s)
Epilepsia , Células Madre Pluripotentes Inducidas , Humanos , Epilepsia/genética , Células Madre Pluripotentes Inducidas/metabolismo , Homocigoto , Femenino , Masculino , Línea Celular , Aldehído Deshidrogenasa
6.
Nat Commun ; 15(1): 1210, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331934

RESUMEN

We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.


Asunto(s)
Discapacidad Intelectual , Factores de Transcripción , Humanos , Masculino , Ratones , Animales , Factores de Transcripción/metabolismo , Estructuras R-Loop , Transporte Activo de Núcleo Celular , Discapacidad Intelectual/genética , Daño del ADN , Fenotipo , ARN Mensajero/metabolismo
7.
Eur J Hum Genet ; 32(3): 324-332, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38282074

RESUMEN

Pathogenic variants in KANSL1 and 17q21.31 microdeletions are causative of Koolen-de Vries syndrome (KdVS), a neurodevelopmental syndrome with characteristic facial dysmorphia. Our previous work has shown that syndromic conditions caused by pathogenic variants in epigenetic regulatory genes have identifiable patterns of DNA methylation (DNAm) change: DNAm signatures or episignatures. Given the role of KANSL1 in histone acetylation, we tested whether variants underlying KdVS are associated with a DNAm signature. We profiled whole-blood DNAm for 13 individuals with KANSL1 variants, four individuals with 17q21.31 microdeletions, and 21 typically developing individuals, using Illumina's Infinium EPIC array. In this study, we identified a robust DNAm signature of 456 significant CpG sites in 8 individuals with KdVS, a pattern independently validated in an additional 7 individuals with KdVS. We also demonstrate the diagnostic utility of the signature and classify two KANSL1 VUS as well as four variants in individuals with atypical clinical presentation. Lastly, we investigated tissue-specific DNAm changes in fibroblast cells from individuals with KdVS. Collectively, our findings contribute to the understanding of the epigenetic landscape related to KdVS and aid in the diagnosis and classification of variants in this structurally complex genomic region.


Asunto(s)
Anomalías Múltiples , Deleción Cromosómica , Discapacidad Intelectual , Humanos , Anomalías Múltiples/genética , Cromosomas Humanos Par 17 , Metilación de ADN , Genes Reguladores , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico
8.
Autophagy ; 20(1): 15-28, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37674294

RESUMEN

Macroautophagy/autophagy is an evolutionarily highly conserved catabolic process that is important for the clearance of cytosolic contents to maintain cellular homeostasis and survival. Recent findings point toward a critical role for autophagy in brain function, not only by preserving neuronal health, but especially by controlling different aspects of neuronal development and functioning. In line with this, mutations in autophagy-related genes are linked to various key characteristics and symptoms of neurodevelopmental disorders (NDDs), including autism, micro-/macrocephaly, and epilepsy. However, the group of NDDs caused by mutations in autophagy-related genes is relatively small. A significant proportion of NDDs are associated with mutations in genes encoding epigenetic regulatory proteins that modulate gene expression, so-called chromatinopathies. Intriguingly, several of the NDD-linked chromatinopathy genes have been shown to regulate autophagy-related genes, albeit in non-neuronal contexts. From these studies it becomes evident that tight transcriptional regulation of autophagy-related genes is crucial to control autophagic activity. This opens the exciting possibility that aberrant autophagic regulation might underly nervous system impairments in NDDs with disturbed epigenetic regulation. We here summarize NDD-related chromatinopathy genes that are known to regulate transcriptional regulation of autophagy-related genes. Thereby, we want to highlight autophagy as a candidate key hub mechanism in NDD-related chromatinopathies.Abbreviations: ADNP: activity dependent neuroprotector homeobox; ASD: autism spectrum disorder; ATG: AutTophaGy related; CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; EHMT: euchromatic histone lysine methyltransferase; EP300: E1A binding protein p300; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; H3K4me3: histone 3 lysine 4 trimethylation; H3K9me1/2/3: histone 3 lysine 9 mono-, di-, or trimethylation; H3K27me2/3: histone 3 lysine 27 di-, or trimethylation; hiPSCs: human induced pluripotent stem cells; HSP: hereditary spastic paraplegia; ID: intellectual disability; KANSL1: KAT8 regulatory NSL complex subunit 1; KAT8: lysine acetyltransferase 8; KDM1A/LSD1: lysine demethylase 1A; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NDD: neurodevelopmental disorder; PHF8: PHD finger protein 8; PHF8-XLID: PHF8-X linked intellectual disability syndrome; PTM: post-translational modification; SESN2: sestrin 2; YY1: YY1 transcription factor; YY1AP1: YY1 associated protein 1.


Asunto(s)
Trastorno del Espectro Autista , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual , Humanos , Histonas/metabolismo , Epigénesis Genética , Lisina/metabolismo , Discapacidad Intelectual/genética , Trastorno del Espectro Autista/genética , Autofagia/genética , Células Madre Pluripotentes Inducidas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Sestrinas/genética , Sestrinas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/metabolismo , Histona Demetilasas/metabolismo
9.
Stem Cell Reports ; 18(11): 2222-2239, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37863044

RESUMEN

Mechanisms that underlie homeostatic plasticity have been extensively investigated at single-cell levels in animal models, but are less well understood at the network level. Here, we used microelectrode arrays to characterize neuronal networks following induction of homeostatic plasticity in human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons co-cultured with rat astrocytes. Chronic suppression of neuronal activity through tetrodotoxin (TTX) elicited a time-dependent network re-arrangement. Increased expression of AMPA receptors and the elongation of axon initial segments were associated with increased network excitability following TTX treatment. Transcriptomic profiling of TTX-treated neurons revealed up-regulated genes related to extracellular matrix organization, while down-regulated genes related to cell communication; also astrocytic gene expression was found altered. Overall, our study shows that hiPSC-derived neuronal networks provide a reliable in vitro platform to measure and characterize homeostatic plasticity at network and single-cell levels; this platform can be extended to investigate altered homeostatic plasticity in brain disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas , Plasticidad Neuronal , Humanos , Ratas , Animales , Células Cultivadas , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Técnicas de Cocultivo , Tetrodotoxina/farmacología
10.
J Neurochem ; 167(1): 76-89, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37650222

RESUMEN

N-acetylneuraminic acid (sialic acid) is present in large quantities in the brain and plays a crucial role in brain development, learning, and memory formation. How sialic acid contributes to brain development is not fully understood. The purpose of this study was to determine the effects of reduced sialylation on network formation in human iPSC-derived neurons (iNeurons). Using targeted mass spectrometry and antibody binding, we observed an increase in free sialic acid and polysialic acid during neuronal development, which was disrupted by treatment of iNeurons with a synthetic inhibitor of sialic acid biosynthesis. Sialic acid inhibition disturbed synapse formation and network formation on microelectrode array (MEA), showing short but frequent (network) bursts and an overall lower firing rate, and higher percentage of random spikes. This study shows that sialic acid is necessary for neuronal network formation during human neuronal development and provides a physiologically relevant model to study the role of sialic acid in patient-derived iNeurons.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ácido N-Acetilneuramínico , Humanos , Ácido N-Acetilneuramínico/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo
11.
Stem Cell Res ; 71: 103173, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37540965

RESUMEN

Biallelic pathogenic variants in ALDH7A1 are associated with pyridoxine-dependent epilepsy (PDE). ALDH7A1 encodes for the third enzyme of the lysine catabolism pathway. In this study a human isogenic ALDH7A1 knock-out iPSC line was created using CRISPR/Cas9 technology. One clone (SCTCi019-B) with biallelic deletions in ALDH7A1 was obtained and fully characterized, showing expression of pluripotency markers, a normal karyotype and no off-targets. Human-based models derived from this iPSC line will contribute to gain insights in the molecular mechanism of disease underlying PDE.


Asunto(s)
Epilepsia , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Sistemas CRISPR-Cas/genética , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Epilepsia/genética , Mutación
12.
Brain ; 146(12): 5153-5167, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467479

RESUMEN

Dravet syndrome is a severe epileptic encephalopathy, characterized by (febrile) seizures, behavioural problems and developmental delay. Eighty per cent of patients with Dravet syndrome have a mutation in SCN1A, encoding Nav1.1. Milder clinical phenotypes, such as GEFS+ (generalized epilepsy with febrile seizures plus), can also arise from SCN1A mutations. Predicting the clinical phenotypic outcome based on the type of mutation remains challenging, even when the same mutation is inherited within one family. This clinical and genetic heterogeneity adds to the difficulties of predicting disease progression and tailoring the prescription of anti-seizure medication. Understanding the neuropathology of different SCN1A mutations may help to predict the expected clinical phenotypes and inform the selection of best-fit treatments. Initially, the loss of Na+-current in inhibitory neurons was recognized specifically to result in disinhibition and consequently seizure generation. However, the extent to which excitatory neurons contribute to the pathophysiology is currently debated and might depend on the patient clinical phenotype or the specific SCN1A mutation. To examine the genotype-phenotype correlations of SCN1A mutations in relation to excitatory neurons, we investigated a panel of patient-derived excitatory neuronal networks differentiated on multi-electrode arrays. We included patients with different clinical phenotypes, harbouring various SCN1A mutations, along with a family in which the same mutation led to febrile seizures, GEFS+ or Dravet syndrome. We hitherto describe a previously unidentified functional excitatory neuronal network phenotype in the context of epilepsy, which corresponds to seizurogenic network prediction patterns elicited by proconvulsive compounds. We found that excitatory neuronal networks were affected differently, depending on the type of SCN1A mutation, but did not segregate according to clinical severity. Specifically, loss-of-function mutations could be distinguished from missense mutations, and mutations in the pore domain could be distinguished from mutations in the voltage sensing domain. Furthermore, all patients showed aggravated neuronal network responses at febrile temperatures compared with controls. Finally, retrospective drug screening revealed that anti-seizure medication affected GEFS+ patient- but not Dravet patient-derived neuronal networks in a patient-specific and clinically relevant manner. In conclusion, our results indicate a mutation-specific excitatory neuronal network phenotype, which recapitulates the foremost clinically relevant features, providing future opportunities for precision therapies.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia Generalizada , Convulsiones Febriles , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Estudios Retrospectivos , Mutación/genética , Epilepsia Generalizada/genética , Fenotipo , Convulsiones Febriles/genética , Convulsiones Febriles/diagnóstico , Neuronas
13.
Stem Cell Reports ; 18(8): 1686-1700, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37419110

RESUMEN

Human induced pluripotent stem cell (hiPSC)-derived neuronal networks on multi-electrode arrays (MEAs) provide a unique phenotyping tool to study neurological disorders. However, it is difficult to infer cellular mechanisms underlying these phenotypes. Computational modeling can utilize the rich dataset generated by MEAs, and advance understanding of disease mechanisms. However, existing models lack biophysical detail, or validation and calibration to relevant experimental data. We developed a biophysical in silico model that accurately simulates healthy neuronal networks on MEAs. To demonstrate the potential of our model, we studied neuronal networks derived from a Dravet syndrome (DS) patient with a missense mutation in SCN1A, encoding sodium channel NaV1.1. Our in silico model revealed that sodium channel dysfunctions were insufficient to replicate the in vitro DS phenotype, and predicted decreased slow afterhyperpolarization and synaptic strengths. We verified these changes in DS patient-derived neurons, demonstrating the utility of our in silico model to predict disease mechanisms.


Asunto(s)
Epilepsias Mioclónicas , Células Madre Pluripotentes Inducidas , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Epilepsias Mioclónicas/genética , Neuronas/fisiología , Mutación Missense , Mutación
14.
Epilepsia ; 64(8): 1975-1990, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37195166

RESUMEN

Epilepsy is one of the most common neurological disorders. Although many factors contribute to epileptogenesis, seizure generation is mostly linked to hyperexcitability due to alterations in excitatory/inhibitory (E/I) balance. The common hypothesis is that reduced inhibition, increased excitation, or both contribute to the etiology of epilepsy. Increasing evidence shows that this view is oversimplistic, and that increased inhibition through depolarizing γ-aminobutyric acid (GABA) similarly contributes to epileptogenisis. In early development, GABA signaling is depolarizing, inducing outward Cl- currents due to high intracellular Cl- concentrations. During maturation, the mechanisms of GABA action shift from depolarizing to hyperpolarizing, a critical event during brain development. Altered timing of this shift is associated with both neurodevelopmental disorders and epilepsy. Here, we consider the different ways that depolarizing GABA contributes to altered E/I balance and epileptogenesis, and discuss that alterations in depolarizing GABA could be a common denominator underlying seizure generation in neurodevelopmental disorders and epilepsies.


Asunto(s)
Epilepsia , Trastornos del Neurodesarrollo , Humanos , Ácido gamma-Aminobutírico/fisiología , Epilepsia/etiología , Convulsiones/complicaciones , Trastornos del Neurodesarrollo/complicaciones
15.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37195288

RESUMEN

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Asunto(s)
Segmento Inicial del Axón , Epilepsia , Células Madre Pluripotentes Inducidas , Humanos , Segmento Inicial del Axón/metabolismo , Ancirinas/genética , Ancirinas/metabolismo , Neuronas/metabolismo , Epilepsia/genética , Epilepsia/metabolismo
16.
Mol Psychiatry ; 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997609

RESUMEN

Mutations in PCDH19 gene, which encodes protocadherin-19 (PCDH19), cause Developmental and Epileptic Encephalopathy 9 (DEE9). Heterogeneous loss of PCDH19 expression in neurons is considered a key determinant of the disorder; however, how PCDH19 mosaic expression affects neuronal network activity and circuits is largely unclear. Here, we show that the hippocampus of Pcdh19 mosaic mice is characterized by structural and functional synaptic defects and by the presence of PCDH19-negative hyperexcitable neurons. Furthermore, global reduction of network firing rate and increased neuronal synchronization have been observed in different limbic system areas. Finally, network activity analysis in freely behaving mice revealed a decrease in excitatory/inhibitory ratio and functional hyperconnectivity within the limbic system of Pcdh19 mosaic mice. Altogether, these results indicate that altered PCDH19 expression profoundly affects circuit wiring and functioning, and provide new key to interpret DEE9 pathogenesis.

17.
STAR Protoc ; 4(1): 101967, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36856768

RESUMEN

Obtaining mechanistic insights into the disruptions of neuronal excitation and inhibition (E/I) balance in brain disorders has remained challenging. Here, we present a protocol for in vitro characterization of E/I balance. Using human induced pluripotent stem cells, we describe the generation of glutamatergic excitatory/GABAergic inhibitory neuronal co-cultures at defined ratios, followed by analyzing E/I network properties using immunocytochemistry and multi-electrode array recording. This approach allows for studying cell-type-specific contribution of disease genes to E/I balance in human neurons. For complete details on the use and execution of this protocol, please refer to Mossink et al. (2022)1 and Wang et al. (2022).2.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Técnicas de Cocultivo , Neuronas GABAérgicas
18.
Stem Cell Res ; 69: 103069, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36947993

RESUMEN

GCDH encodes for the enzyme catalyzing the sixth step of the lysine catabolism pathway. Biallelic pathogenic variants in GCDH have been associated with glutaric aciduria type 1 (GA1). In this study CRISPR/Cas9 technology was used to create an isogenic GCDH knock-out human iPSC line. One clone with a biallelic deletion (SCTCi019-A) in GCDH was obtained and fully characterized, revealing a normal karyotype, no off-targets detected and expression of pluripotency markers. This iPSC line can contribute to gain insights in the molecular mechanism of disease.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Encefalopatías Metabólicas , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Sistemas CRISPR-Cas/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/metabolismo
19.
Stem Cell Res ; 68: 103053, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842376

RESUMEN

NPHP1 (Nephrocystin 1) is a protein that localizes to the transition zone of the cilium, a small organelle that projects from the plasma membrane of most cells and allows for integration and coordination of signalling pathways during development and homeostasis. Loss of NPHP1 function due to biallelic NPHP1 gene mutations can lead to the development of ciliopathies - a heterogeneous spectra of disorders characterized by ciliary dysfunction. Here we report the generation of an NPHP1-null hiPSC line (UCSFi001-A-68) via CRISPR/Cas9-mediated non-homologous end joining in the UCSFi001-A background, for study of the role that this protein plays in different tissues.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes Inducidas/metabolismo , Sistemas CRISPR-Cas/genética , Mutación del Sistema de Lectura , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA