Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
ACS Sens ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38753397

Chemiresistive polymer-based sensors are promising platforms for monitoring various gases and volatile organic compounds. While they offer appealing attributes, such as ease of fabrication, flexibility, and cost-effectiveness, most of these sensors have a nearly identical response to cross-reactive gases, such as ammonia (NH3) and carbon dioxide (CO2). Aiming to address the shortcomings of chemiresistive polymer-based sensors in selectivity and simultaneous measurements of cross-reactive gases, a chemiresistive sensor array was developed consisting of components sensitive to carbon dioxide and ammonia as well as a control segment to provide the baseline. The designed system demonstrated a wide detection range for both ammonia (ranging from 0.05 to 1000 ppm) and carbon dioxide (ranging from 103 to 106 ppm) at both room and low temperatures (e.g., 4 °C). Our results also demonstrate the ability of this sensor array for the simultaneous detection of carbon dioxide and ammonia selectively in the presence of other gases and volatile organic compounds. Finally, the array was used to monitor CO2/NH3 in real food samples to demonstrate the potential for real-world applications.

2.
Acta Biomater ; 180: 46-60, 2024 May.
Article En | MEDLINE | ID: mdl-38615811

Blood-contacting medical devices often succumb to thrombosis, limiting their durability and safety in clinical applications. Thrombosis is fundamentally initiated by the nonspecific adsorption of proteins to the material surface, which is strongly governed by thermodynamic factors established by the nature of the interaction between the material surface, surrounding water molecules, and the protein itself. Along these lines, different surface materials (such as polymeric, metallic, ceramic, or composite) induce different entropic and enthalpic changes at the surface-protein interface, with material wettability significantly impacting this behavior. Consequently, protein adsorption on medical devices can be modulated by altering their wettability and surface energy. A plethora of polymeric coating modifications have been utilized for this purpose; hydrophobic modifications may promote or inhibit protein adsorption determined by van der Waals forces, while hydrophilic materials achieve this by mainly relying on hydrogen bonding, or unbalanced/balanced electrostatic interactions. This review offers a cohesive understanding of the thermodynamics governing these phenomena, to specifically aid in the design and selection of hemocompatible polymeric coatings for biomedical applications. STATEMENT OF SIGNIFICANCE: Blood-contacting medical devices often succumb to thrombosis, limiting their durability and safety in clinical applications. A plethora of polymeric coating modifications have been utilized for addressing this issue. This review offers a cohesive understanding of the thermodynamics governing these phenomena, to specifically aid in the design and selection of hemocompatible polymeric coatings for biomedical applications.


Coated Materials, Biocompatible , Polymers , Thermodynamics , Adsorption , Humans , Polymers/chemistry , Coated Materials, Biocompatible/chemistry , Surface Properties , Thrombosis/prevention & control , Animals , Blood Proteins/chemistry , Blood Proteins/metabolism
3.
ACS Sens ; 9(4): 1735-1742, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38572917

Carbon dioxide (CO2) gas sensing and monitoring have gained prominence for applications such as smart food packaging, environmental monitoring of greenhouse gases, and medical diagnostic tests. Although CO2 sensors based on metal oxide semiconductors are readily available, they often suffer from limitations such as high operating temperatures (>250 °C), limited response at elevated humidity levels (>60% RH), bulkiness, and limited selectivity. In this study, we designed a chemiresistive sensor for CO2 detection to overcome these problems. The sensing material of this sensor consists of a CO2 switchable polymer based on N-3-(dimethylamino)propyl methacrylamide (DMAPMAm) and methoxyethyl methacrylate (MEMA) [P(D-co-M)], and diethylamine. The designed sensor has a detection range for CO2 between 103 and 106 ppm even at high humidity levels (>80% RH), and it is capable of differentiating ammonia at low concentrations (0.1-5 ppm) from CO2. The addition of diethylamine improved sensor performance such as selectivity, response/recovery time, and long-term stability. These data demonstrate the potential of using this sensor for the detection of food spoilage.


Carbon Dioxide , Carbon Dioxide/analysis , Humidity , Acrylamides/chemistry , Polymers/chemistry , Methacrylates/chemistry , Gases/analysis
4.
JTCVS Open ; 15: 113-124, 2023 Sep.
Article En | MEDLINE | ID: mdl-37808055

Background: Polymeric heart valves (PHVs) may address the limitations of mechanical and tissue valves in the treatment of valvular heart disease. In this study, a bioinspired valve was designed, assessed in silico, and validated by an in vitro model to develop a valve with optimum function for pediatric applications. Methods: A bioinspired heart valve was created computationally with leaflet curvature derived from native valve anatomies. A valve diameter of 18 mm was chosen to approach sizes suitable for younger patients. Valves of different thicknesses were fabricated via dip-coating with siloxane-based polyurethane and tested in a pulse duplicator for their hydrodynamic function. The same valves were tested computationally using an arbitrary Lagrangian-Eulerian plus immersed solid approach, in which the fluid-structure interaction between the valves and fluid passing through them was studied and compared with experimental data. Results: Computational analysis showed that valves of 110 to 200 µm thickness had effective orifice areas (EOAs) of 1.20 to 1.30 cm2, with thinner valves exhibiting larger openings. In vitro tests demonstrated that PHVs of similar thickness had EOAs of 1.05 to 1.35 cm2 and regurgitant fractions (RFs) <7%. Valves with thinner leaflets exhibited optimal systolic performance, whereas thicker valves had lower RFs. Conclusions: Bioinspired PHVs demonstrated good hydrodynamic performance that exceeded ISO 5840-2 standards. Both methods of analysis showed similar correlations between leaflet thickness and valve systolic function. Further development of this PHV may lead to enhanced durability and thus a more reliable heart valve replacement than contemporary options.

5.
Gels ; 9(8)2023 Jul 28.
Article En | MEDLINE | ID: mdl-37623066

Chronic wounds, depending on the bacteria that caused the infection, can be associated with an extreme acidic or basic pH. Therefore, the application of pH-responsive hydrogels has been instigated for the delivery of therapeutics to chronic wounds. Herein, with the aim of developing a flexible pH-responsive hydrogel, we functionalized hydrophilic polyurethanes with either cationic (polyethylene imine) or anionic (succinic anhydride) moieties. A comprehensive physicochemical characterization of corresponding polymers was carried out. Particularly, when tested in aqueous buffers, the surface charge of hydrogel films was closely correlated with the pH of the buffers. The loading of the cationic and anionic hydrogel films with various compound models (bromophenol blue; negatively charged or Pyronin Y; positively charged) showed that the electrostatic forces between the polymeric backbone and the compound model will determine the ultimate release rate at any given pH. The potential application of these films for chronic wound drug delivery was assessed by loading them with an antibiotic (ciprofloxacin). In vitro bacterial culturing was performed using Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Results showed that at the same drug dosage, different release profiles achievable from cationic and anionic polyurethanes can yield different degrees of an antibacterial effect. Overall, our results suggest the potential application of cationic and anionic hydrophilic polyurethanes as flexible pH-responsive materials for the delivery of therapeutics to chronic wounds.

6.
Bioeng Transl Med ; 8(4): e10501, 2023 Jul.
Article En | MEDLINE | ID: mdl-37476058

Congenital heart diseases (CHDs) frequently impact the right ventricular outflow tract, resulting in a significant incidence of pulmonary valve replacement in the pediatric population. While contemporary pediatric pulmonary valve replacements (PPVRs) allow satisfactory patient survival, their biocompatibility and durability remain suboptimal and repeat operations are commonplace, especially for very young patients. This places enormous physical, financial, and psychological burdens on patients and their parents, highlighting an urgent clinical need for better PPVRs. An important reason for the clinical failure of PPVRs is biofouling, which instigates various adverse biological responses such as thrombosis and infection, promoting research into various antifouling chemistries that may find utility in PPVR materials. Another significant contributor is the inevitability of somatic growth in pediatric patients, causing structural discrepancies between the patient and PPVR, stimulating the development of various growth-accommodating heart valve prototypes. This review offers an interdisciplinary perspective on these challenges by exploring clinical experiences, physiological understandings, and bioengineering technologies that may contribute to device development. It thus aims to provide an insight into the design requirements of next-generation PPVRs to advance clinical outcomes and promote patient quality of life.

7.
Chem Soc Rev ; 52(10): 3470-3542, 2023 May 22.
Article En | MEDLINE | ID: mdl-37128844

CO2-responsive materials undergo a change in chemical or physical properties in response to the introduction or removal of CO2. The use of CO2 as a stimulus is advantageous as it is abundant, benign, inexpensive, and it does not accumulate in a system. Many CO2-responsive materials have already been explored including polymers, latexes, surfactants, and catalysts. As a sub-set of CO2-responsive polymers, the study of CO2-responsive gels (insoluble, cross-linked polymers) is a unique discipline due to the unique set of changes in the gels brought about by CO2 such as swelling or a transformed morphology. In the past 15 years, CO2-responsive gels and self-assembled gels have been investigated for a variety of emerging potential applications, reported in 90 peer-reviewed publications. The two most widely exploited properties include the control of flow (fluids) via CO2-triggered aggregation and their capacity for reversible CO2 absorption-desorption, leading to applications in Enhanced Oil Recovery (EOR) and CO2 sequestration, respectively. In this paper, we review the preparation, properties, and applications of these CO2-responsive gels, broadly classified by particle size as nanogels, microgels, aerogels, and macrogels. We have included a section on CO2-induced self-assembled gels (including poly(ionic liquid) gels).

8.
Adv Mater ; 35(51): e2212046, 2023 Dec.
Article En | MEDLINE | ID: mdl-36965152

Helical plants have the ability of tropisms to respond to natural stimuli, and biomimicry of such helical shapes into artificial muscles has been vastly popular. However, the shape-mimicked actuators only respond to artificially provided stimulus, they are not adaptive to variable natural conditions, thus being unsuitable for real-life applications where on-demand, autonomous operations are required. Novel artificial muscles made of hierarchically patterned helically wound yarns that are self-adaptive to environmental humidity and temperature changes are demonstrated here. Unlike shape-mimicked artificial muscles, a unique microstructural biomimicking approach is adopted, where the muscle yarns can effectively replicate the hydrotropism and thermotropism of helical plants to their microfibril level using plant-like microstructural memories. Large strokes, with rapid movement, are obtained when the individual microfilament of yarn is inlaid with hydrogel and further twisted into a coil-shaped hierarchical structure. The developed artificial muscle provides an average actuation speed of ≈5.2% s-1 at expansion and ≈3.1% s-1 at contraction cycles, being the fastest amongst previously demonstrated actuators of similar type. It is demonstrated that these muscle yarns can autonomously close a window in wet climates. The building block yarns are washable without any material degradation, making them suitable for smart, reusable textile and soft robotic devices.


Muscles , Robotics , Textiles , Movement , Humidity
9.
Adv Sci (Weinh) ; 10(12): e2207603, 2023 04.
Article En | MEDLINE | ID: mdl-36782094

The deployment of structures that enable localized release of bioactive molecules can result in more efficacious treatment of disease and better integration of implantable bionic devices. The strategic design of a biopolymeric coating can be used to engineer the optimal release profile depending on the task at hand. As illustrative examples, here advances in delivery of drugs from bone, brain, ocular, and cardiovascular implants are reviewed. These areas are focused to highlight that both hard and soft tissue implants can benefit from controlled localized delivery. The composition of biopolymers used to achieve appropriate delivery to the selected tissue types, and their corresponding outcomes are brought to the fore. To conclude, key factors in designing drug-loaded biopolymeric coatings for biomedical implants are highlighted.


Prostheses and Implants , Biopolymers
10.
Burns Trauma ; 11: tkac052, 2023.
Article En | MEDLINE | ID: mdl-36694861

Background: Excessive scarring and fibrosis are the most severe and common complications of burn injury. Prolonged exposure to high levels of glucocorticoids detrimentally impacts on skin, leading to skin thinning and impaired wound healing. Skin can generate active glucocorticoids locally through expression and activity of the 11ß-hydroxysteroid dehydrogenase type 1 enzyme (11ß-HSD1). We hypothesised that burn injury would induce 11ß-HSD1 expression and local glucocorticoid metabolism, which would have important impacts on wound healing, fibrosis and scarring. We additionally proposed that pharmacological manipulation of this system could improve aspects of post-burn scarring. Methods: Skin 11ß-HSD1 expression in burns patients and mice was examined. The impacts of 11ß-HSD1 mediating glucocorticoid metabolism on burn wound healing, scar formation and scar elasticity and quality were additionally examined using a murine 11ß-HSD1 genetic knockout model. Slow-release scaffolds containing therapeutic agents, including active and inactive glucocorticoids, were developed and pre-clinically tested in mice with burn injury. Results: We demonstrate that 11ß-HSD1 expression levels increased substantially in both human and mouse skin after burn injury. 11ß-HSD1 knockout mice experienced faster wound healing than wild type mice but the healed wounds manifested significantly more collagen deposition, tensile strength and stiffness, features characteristic of excessive scarring. Application of slow-release prednisone, an inactive glucocorticoid, slowed the initial rate of wound closure but significantly reduced post-burn scarring via reductions in inflammation, myofibroblast generation, collagen production and scar stiffness. Conclusions: Skin 11ß-HSD1 expression is a key regulator of wound healing and scarring after burn injury. Application of an inactive glucocorticoid capable of activation by local 11ß-HSD1 in skin slows the initial rate of wound closure but significantlyimproves scar characteristics post burn injury.

11.
J Biomech Eng ; 145(5)2023 05 01.
Article En | MEDLINE | ID: mdl-36459156

Current heart valve replacements lack durability and prolonged performance, especially in pediatric patients. In part, these problems may be attributed to the materials chosen for these constructs, but another important contributing factor is the design of the valve, as this dictates hemodynamic performance and impacts leaflet stresses which may accelerate structural valve deterioration. Most current era bioprosthetic valves adhere to a fundamental design where flat leaflets are supported by commissural posts, secured to a sewing ring. This overall design strategy is effective, but functionality and durability can be improved by incorporating features of the native valve geometry. This paper presents a novel workflow for developing and analyzing bio-inspired valve designs computationally. The leaflet curvature was defined using a mathematical equation whose parameters were derived from the three-dimensional model of a native sheep pulmonary valve obtained via microcomputed tomography. Finite element analysis was used to screen the various valve designs proposed in this study by assessing the effect of leaflet thickness, Young's modulus, and height/curvature on snap-through (where leaflets bend against their original curvature), geometric orifice area (GOA) and the stress in the leaflets. This workflow demonstrated benefits for valve designs with leaflet thicknesses between 0.1 and 0.3 mm, Young's moduli less than 50 MPa, and elongated leaflets with higher curvatures. The proposed workflow brings substantial efficiency gains at the design stage, minimizing manufacturing and animal testing during iterative improvements, and offers a bridge between in vitro and more complex in silico studies in the future.


Heart Valve Prosthesis , Animals , Sheep , X-Ray Microtomography , Workflow , Prosthesis Design , Stress, Mechanical , Heart Valves , Aortic Valve/surgery , Models, Cardiovascular
12.
Nanoscale Adv ; 4(2): 353-376, 2022 Jan 18.
Article En | MEDLINE | ID: mdl-36132691

Carbon dots (CDs) are a recently synthesised class of carbon-based nanostructures known as zero-dimensional (0D) nanomaterials, which have drawn a great deal of attention owing to their distinctive features, which encompass optical properties (e.g., photoluminescence), ease of passivation, low cost, simple synthetic route, accessibility of precursors and other properties. These newly synthesised nano-sized materials can replace traditional semiconductor quantum dots, which exhibit significant toxicity drawbacks and higher cost. It is demonstrated that their involvement in diverse areas of chemical and bio-sensing, bio-imaging, drug delivery, photocatalysis, electrocatalysis and light-emitting devices consider them as flawless and potential candidates for biomedical application. In this review, we provide a classification of CDs within their extended families, an overview of the different methods of CDs preparation, especially from natural sources, i.e., environmentally friendly and their unique photoluminescence properties, thoroughly describing the peculiar aspects of their applications in the biomedical field, where we think they will thrive as the next generation of quantum emitters. We believe that this review covers a niche that was not reviewed by other similar publications.

13.
ACS Omega ; 7(26): 22232-22243, 2022 Jul 05.
Article En | MEDLINE | ID: mdl-35811921

Amine-functionalized polymers (AFPs) are able to react with carbon dioxide (CO2) and are therefore useful in CO2 capture and sensing. To develop AFP-based CO2 sensors, it is critical to examine their electrical responses to CO2 over long periods of time, so that the device can be used consistently for measuring CO2 concentration. To this end, we synthesized poly(N-[3-(dimethylamino)propyl] methacrylamide) (pDMAPMAm) by free radical polymerization and tested its ability to behave as a CO2-responsive polymer in a transducer. The electrical response of this polymer to CO2 upon long exposure times was measured in both the aqueous and solid phases. Direct current resistance measurement tests on pDMAPMAm films printed along with the silver electrodes in the presence of CO2 at various concentrations reveal a two-region electrical response. Upon continuous exposure to different CO2 flow rates (at a constant pressure of 0.2 MPa), the resistance first decreased over time, reaching a minimum, followed by a gradual increase with further exposure to CO2. A similar trend is observed when CO2 is introduced to an aqueous solution of pDMAPMAm. The in situ monitoring of pH suggests that the change in resistance of pDMAPMAm can be attributed to the protonation of tertiary amine groups in the presence of CO2. This two-region response of pDMAPMAm is based on a proton-hopping mechanism and a change in the number of free amines when pDMAPMAm is exposed to various levels of CO2.

14.
ACS Appl Mater Interfaces ; 14(18): 20491-20505, 2022 May 11.
Article En | MEDLINE | ID: mdl-35486920

Hydrogen peroxide (H2O2) is a common chemical used in many industries and can be found in various biological environments, water, and air. Yet, H2O2 in a certain range of concentrations can be hazardous and toxic. Therefore, it is crucial to determine its concentration at different conditions for safety and diagnostic purposes. This review provides an insight about different types of sensors that have been developed for detection of H2O2. Their flexibility, stability, cost, detection limit, manufacturing, and challenges in their applications have been compared. More specifically the advantages and disadvantages of various flexible substrates that have been utilized for the design of H2O2 sensors were discussed. These substrates include carbonaceous substrates (e.g., reduced graphene oxide films, carbon cloth, carbon, and graphene fibers), polymeric substrates, paper, thin glass, and silicon wafers. Many of these substrates are often decorated with nanostructures composed of Pt, Au, Ag, MnO2, Fe3O4, or a conductive polymer to enhance the performance of sensors. The impact of these nanostructures on the sensing performance of resulting flexible H2O2 sensors has been reviewed in detail. In summary, the detection limits of these sensors are within the range of 100 nM-1 mM, which makes them potentially, but not necessarily, suitable for applications in health, food, and environmental monitoring. However, the required sample volume, cost, ease of manufacturing, and stability are often neglected compared to other detection parameters, which hinders sensors' real-world application. Future perspectives on how to address some of the substrate limitations and examples of application-driven sensors are also discussed.

15.
Gels ; 8(1)2022 Jan 07.
Article En | MEDLINE | ID: mdl-35049580

Breast cancer is the most common and biggest health threat for women. There is an urgent need to develop novel breast cancer therapies to overcome the shortcomings of conventional surgery and chemotherapy, which include poor drug efficiency, damage to normal tissues, and increased side effects. Drug delivery systems based on injectable hydrogels have recently gained remarkable attention, as they offer encouraging solutions for localized, targeted, and controlled drug release to the tumor site. Such systems have great potential for improving drug efficiency and reducing the side effects caused by long-term exposure to chemotherapy. The present review aims to provide a critical analysis of the latest developments in the application of drug delivery systems using stimuli-responsive injectable hydrogels for breast cancer treatment. The focus is on discussing how such hydrogel systems enhance treatment efficacy and incorporate multiple breast cancer therapies into one system, in response to multiple stimuli, including temperature, pH, photo-, magnetic field, and glutathione. The present work also features a brief outline of the recent progress in the use of tough hydrogels. As the breast undergoes significant physical stress and movement during sporting and daily activities, it is important for drug delivery hydrogels to have sufficient mechanical toughness to maintain structural integrity for a desired period of time.

16.
Sci Robot ; 6(53)2021 04 28.
Article En | MEDLINE | ID: mdl-34043569

Powering miniature robots using actuating materials that mimic skeletal muscle is attractive because conventional mechanical drive systems cannot be readily downsized. However, muscle is not the only mechanically active system in nature, and the thousandfold contraction of eukaryotic DNA into the cell nucleus suggests an alternative mechanism for high-stroke artificial muscles. Our analysis reveals that the compaction of DNA generates a mass-normalized mechanical work output exceeding that of skeletal muscle, and this result inspired the development of composite double-helix fibers that reversibly convert twist to DNA-like plectonemic or solenoidal supercoils by simple swelling and deswelling. Our modeling-optimized twisted fibers give contraction strokes as high as 90% with a maximum gravimetric work 36 times higher than skeletal muscle. We found that our supercoiling coiled fibers simultaneously provide high stroke and high work capacity, which is rare in other artificial muscles.


Artificial Organs , DNA, Superhelical , Muscle, Skeletal , Robotics , Acrylic Resins , Biomimetic Materials , Biomimetics , Mechanical Phenomena , Miniaturization , Polyesters , Smart Materials , Tensile Strength
17.
ACS Sens ; 5(7): 1921-1928, 2020 07 24.
Article En | MEDLINE | ID: mdl-32551585

Ethylene is a hormone that plays a critical role in many phases of plant growth and fruit ripening. Currently, detection of ethylene heavily relies on sophisticated and time-consuming conventional assays such as chromatography, spectroscopy, and electrochemical methods. Herein, we develop a polydiacetylene-based sensor for the detection of ethylene via color change. The sensors are prepared through the reaction between polydiacetylene and Lawesson's reagent that results in decorating polydiacetylene with terminal thiol groups. Upon exposure to ethylene, the sensor changes color from blue to red which is visible to the naked eye. Our device shows a limit of detection for ethylene at 600 ppm in air and can be applied for monitoring ethylene released during the fruit-ripening process. Such easy-to-use ethylene sensors may find applications in plant biology, agriculture, and food industry.


Colorimetry , Sulfhydryl Compounds , Ethylenes , Polyacetylene Polymer
18.
Small ; 16(16): e1905994, 2020 04.
Article En | MEDLINE | ID: mdl-32196143

Early detection of cancer is likely to be one of the most effective means of reducing the cancer mortality rate. Hence, simple and ultra-quick methods for noninvasive detection of early-stage tumors are highly sought-after. In this study, a nanobiosensing platform with a rapid response time of nearly 30 s is introduced for the detection of matrilysin-the salivary gland cancer biomarker-with a limit of detection as low as 30 nm. This sensing platform is based on matrilysin-digestible peptides that bridge gold nanoparticle (AuNPs) cores (≈30-50 nm) and carbon quantum dot (CDs) satellites (≈9 nm). A stepwise synthesis procedure is used for self-assembly of AuNP-peptide-CDs, ensuring their long-term stability. The AuNP-peptide-CDs produce ideal optical signals, with noticeable fluorescence quenching effects. Upon peptide cleavage by matrilysin, CDs leave the surface of AuNPs, resulting in ultra-fast detectable violet and visible fluorescent signals.


Biosensing Techniques , Matrix Metalloproteinase 7/analysis , Metal Nanoparticles , Neoplasms , Quantum Dots , Biomarkers, Tumor/analysis , Carbon , Gold , Humans , Limit of Detection , Peptides
19.
ACS Appl Bio Mater ; 3(4): 1986-1994, 2020 Apr 20.
Article En | MEDLINE | ID: mdl-35025320

Islet cell transplantation in encapsulation devices provides a potential means of treatment for type 1 diabetes. However, such devices pose challenges that must be addressed. Most current encapsulating devices are not scalable and lack retrievability which limit their potential clinical applications. Here, a translatable cell encapsulation device, which is porous, flexible, scalable, and retrievable, is reported. The device is fabricated from processable tough hydrogels (water content >400%), which are extremely tough (>1000 J m-2), yet soft (modulus ∼250-1000 kPa), and highly stretchable (up to 1000%). A facile method is introduced to render hydrogels porous (up to 60%) and control their pore size (∼150-600 µm). Human insulin-producing pancreatic ß-cell lines and porcine neonatal islet cell clusters are incorporated into the pores of the tough hydrogel device with in vitro biocompatibility studies revealing no cytotoxic effects. Viability staining, insulin protein expression, and in vitro glucose-stimulated insulin secretion of the encapsulated ß-cell lines and islets indicate high viability and desired metabolic and endocrine function. Our findings provide a proof-of-concept for the scalable manufacturing of retrievable, hydrogel-based devices with porous structures to facilitate the transplantation of cells without interfering with the cells' function.

20.
Adv Healthc Mater ; 8(21): e1900968, 2019 11.
Article En | MEDLINE | ID: mdl-31592579

Models of the human gastrointestinal tract (GIT) can be powerful tools for examining the biological interactions of food products and pharmaceuticals. This can be done under normal healthy conditions or using models of disease-many of which have no curative therapy. This report outlines the field of gastrointestinal modeling, with a particular focus on the intestine. Traditional in vivo animal models are compared to a range of in vitro models. In vitro systems are elaborated over time, recently culminating with microfluidic intestines-on-chips (IsOC) and 3D bioengineered models. Macroscale models are also reviewed for their important contribution in the microbiota studies. Lastly, it is discussed how in silico approaches may have utility in predicting and interpreting experimental data. The various advantages and limitations of the different systems are contrasted. It is posited that only through complementary use of these models will salient research questions be able to be addressed.


Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Microfluidics/methods , Animals , Caco-2 Cells , HT29 Cells , Humans , Microbiota/physiology
...