Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31570396

RESUMEN

Staphylococcus aureus is responsible for numerous community outbreaks and is one of the most frequent causes of nosocomial infections with significant morbidity and mortality. While the function of lytic transglycosylases (LTs) in relation to cell division, biofilm formation, and antibiotic resistance has been determined for several bacteria, their role in S. aureus remains largely unknown. The only known LTs in S. aureus are immunodominant staphylococcal antigen A (IsaA) and Staphylococcus epidermidis D protein (SceD). Our study demonstrates that, in a strain of methicillin-resistant S. aureus (MRSA), IsaA and SceD contribute differently to biofilm formation and ß-lactam resistance. Deletion of isaA, but not sceD, led to decreased biofilm formation. Additionally, in isaA-deleted strains, ß-lactam resistance was significantly decreased compared to that of wild-type strains. Plasmid-based expression of mecA, a major determinant of ß-lactam resistance in MRSA, in an isaA-deleted strain did not restore ß-lactam resistance, demonstrating that the ß-lactam susceptibility phenotype is exhibited by isaA mutant regardless of the production level of PBP2a. Overall, our results suggest that IsaA is a potential therapeutic target for MRSA infections.

3.
Artículo en Inglés | MEDLINE | ID: mdl-28758016

RESUMEN

Formation of bacterial biofilms on medical devices can cause severe or fatal infectious diseases. In particular, biofilm-associated infections caused by methicillin-resistant Staphylococcus aureus are difficult to eradicate because the biofilm is strongly resistant to antibiotics and the host immune response. There is no effective treatment for biofilm-associated infectionss, except for surgical removal of contaminated medical devices followed by antibiotic therapy. Here we show that norgestimate, an acetylated progestin, effectively inhibits biofilm formation by staphylococcal strains, including methicillin-resistant S. aureus, without inhibiting their growth, decreasing the selective pressure for emergence of resistance. 17-Deacetyl norgestimate, a metabolite of norgestimate, shows much weaker inhibitory activity against staphylococcal biofilm formation, indicating that the acetyl group of norgestimate is important for its activity. Norgestimate inhibits staphylococcal biofilm formation by inhibiting production of polysaccharide intercellular adhesin and proteins in the extracellular matrix. Proteome analysis of S. aureus indicated that norgestimate represses the expression of the cell wall-anchored protein SasG, which promotes intercellular adhesion, and of the glycolytic enzyme enolase, which plays a secondary role in biofilm formation. Notably, norgestimate induces remarkable changes in cell wall morphology, characterized by increased thickness and abnormal rippled septa. Furthermore, norgestimate increases the expression level of penicillin binding protein 2 and resensitizes methicillin-resistant S. aureus to ß-lactam antibiotics. These results suggest that norgestimate is a promising lead compound for the development of drugs to treat biofilm-associated infections, as well as for its ability to resensitize methicillin-resistant S. aureus to ß-lactam antibiotics.

4.
Microbiology (Reading) ; 162(2): 408-419, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26673629

RESUMEN

Addition of stearyl alcohol to the culture medium of Ralstonia sp. NT80 induced expression of a significant amount of secretory lipase. Comparative proteomic analysis of extracellular proteins from NT80 cells grown in the presence or absence of stearyl alcohol revealed that stearyl alcohol induced expression of several secretory proteins including lipase, haemolysin-coregulated protein and nucleoside diphosphate kinase. Expression of these secreted proteins was upregulated at the transcriptional level. Stearyl alcohol also induced the synthesis of polyhydroxyalkanoate. Secretory protein EliA was required for all these responses of NT80 cells to stearyl alcohol. Accordingly, the effects of stearyl alcohol were significantly reduced in the eliA deletion mutant cells of NT80 (ΔeliA). The remaining concentration of stearyl alcohol in the culture supernatant of the wild-type cells, but not that in the culture supernatant of the ΔeliA cells, clearly decreased during the course of growth. These observed phenotypes of the ΔeliA mutant were rescued by gene complementation. The results suggested that EliA is essential for these cells to respond to stearyl alcohol, and that it plays an important role in the recognition and assimilation of stearyl alcohol by NT80 cells.


Asunto(s)
Proteínas Bacterianas/genética , Alcoholes Grasos/metabolismo , Regulación Bacteriana de la Expresión Génica , Poliésteres/metabolismo , Ralstonia/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Medios de Cultivo/química , Eliminación de Gen , Perfilación de la Expresión Génica , Proteínas Hemolisinas/biosíntesis , Lipasa/biosíntesis , Microscopía Electrónica de Transmisión , Nucleósido-Difosfato Quinasa/biosíntesis , Polihidroxialcanoatos/biosíntesis , Ralstonia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...