Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Mech Ageing Dev ; 220: 111944, 2024 May 21.
Article En | MEDLINE | ID: mdl-38782074

Age-related inflammation or inflammaging is a critical deciding factor of physiological homeostasis during aging. Cardiovascular diseases (CVDs) are exquisitely associated with aging and inflammation and are one of the leading causes of high mortality in the elderly population. Inflammaging comprises dysregulation of crosstalk between the vascular and cardiac tissues that deteriorates the vasculature network leading to development of atherosclerosis and atherosclerotic-associated CVDs in elderly populations. Leukocyte differentiation, migration and recruitment holds a crucial position in both inflammaging and atherosclerotic CVDs through relaying the activity of an intricate network of inflammation-associated protein-protein interactions. Among these interactions, small immunoproteins such as chemokines play a major role in the progression of inflammaging and atherosclerosis. Chemokines are actively involved in lymphocyte migration and severe inflammatory response at the site of injury. They relay their functions via chemokine-G protein-coupled receptors-glycosaminoglycan signaling axis and is a principal part for the detection of age-related atherosclerosis and related CVDs. This review focuses on highlighting the detailed intricacies of the effects of chemokine-receptor interaction and chemokine oligomerization on lymphocyte recruitment and its evident role in clinical manifestations of atherosclerosis and related CVDs. Further, the role of chemokine mediated signaling for formulating next-generation therapeutics against atherosclerosis has also been discussed.

2.
J Ethnopharmacol ; 325: 117837, 2024 May 10.
Article En | MEDLINE | ID: mdl-38310985

ETHNOPHARMACOLOGICAL RELEVANCE: Infection and inflammation are critical to global human health status and the goal of current pharmacological interventions intends formulating medications/preventives as a measure to deal with this situation. Chemokines and their cognate receptors are major regulatory molecules in many of these ailments. Natural products have been a keen source to the drug development industry, every year contributing significantly to the growing list of FDA approved drugs. A multiverse of natural resource is employed as a part of curative regimen in folk/traditional/ethnomedicine which can be employed to discover, repurpose, and design potent medications for the diseases of clinical concern. AIM OF THE STUDY: This review aims to systematically document the ethnopharmacologically active agents targeting the infectious-inflammatory diseases through the chemokine-receptor nexus. MATERIALS AND METHODS: Articles related to chemokine/receptor modulating ethnopharmacological anti-inflammatory, anti-infectious natural sources, bioactive compounds, and formulations have been examined with special emphasis on women related diseases. The available literature has been thoroughly scrutinized for the application of traditional medicines in chemokine associated experimental methods, their regulatory outcomes, and pertinence to women's health wherever applicable. Moreover, the potential traditional regimens under clinical trials have been critically assessed. RESULTS: A systematic and comprehensive review on the chemokine-receptor targeting ethnopharmaceutics from the available literature has been provided. The article discusses the implication of traditional medicine in the chemokine system dynamics in diverse infectious-inflammatory disorders such as cardiovascular diseases, allergic diseases, inflammatory diseases, neuroinflammation, and cancer. On this note, critical evaluation of the available data surfaced multiple diseases prevalent in women such as osteoporosis, rheumatoid arthritis, breast cancer, cervical cancer and urinary tract infection. Currently there is no available literature highlighting chemokine-receptor targeting using traditional medicinal approach from women's health perspective. Moreover, despite being potent in vitro and in vivo setups there remains a gap in clinical translation of these formulations, which needs to be strategically and scientifically addressed to pave the way for their successful industrial translation. CONCLUSIONS: The review provides an optimistic global perspective towards the applicability of ethnopharmacology in chemokine-receptor regulated infectious and inflammatory diseases with special emphasis on ailments prevalent in women, consecutively addressing their current status of clinical translation and future directions.


Neoplasms , Plants, Medicinal , Female , Humans , Ethnopharmacology , Phytotherapy/methods , Receptors, Chemokine , Plant Extracts/pharmacology , Neoplasms/drug therapy , Chemokines , Phytochemicals/pharmacology
3.
J Pharmacol Exp Ther ; 388(1): 91-109, 2024 01 02.
Article En | MEDLINE | ID: mdl-37699711

Infectious and inflammatory diseases are one of the leading causes of death globally. The status quo has become more prominent with the onset of the coronavirus disease 2019 (COVID-19) pandemic. To combat these potential crises, proteins have been proven as highly efficacious drugs, drug targets, and biomarkers. On the other hand, advancements in nanotechnology have aided efficient and sustained drug delivery due to their nano-dimension-acquired advantages. Combining both strategies together, the protein nanoplatforms are equipped with the advantageous intrinsic properties of proteins as well as nanoformulations, eloquently changing the field of nanomedicine. Proteins can act as carriers, therapeutics, diagnostics, and theranostics in their nanoform as fusion proteins or as composites with other organic/inorganic materials. Protein-based nanoplatforms have been extensively explored to target the major infectious and inflammatory diseases of clinical concern. The current review comprehensively deliberated proteins as nanocarriers for drugs and nanotherapeutics for inflammatory and infectious agents, with special emphasis on cancer and viral diseases. A plethora of proteins from diverse organisms have aided in the synthesis of protein-based nanoformulations. The current study specifically presented the proteins of human and pathogenic origin to dwell upon the field of protein nanotechnology, emphasizing their pharmacological advantages. Further, the successful clinical translation and current bottlenecks of the protein-based nanoformulations associated with the infection-inflammation paradigm have also been discussed comprehensively. SIGNIFICANCE STATEMENT: This review discusses the plethora of promising protein-based nanocarriers and nanotherapeutics explored for infectious and inflammatory ailments, with particular emphasis on protein nanoparticles of human and pathogenic origin with reference to the advantages, ADME (absorption, distribution, metabolism, and excretion parameters), and current bottlenecks in development of protein-based nanotherapeutic interventions.


Drug Delivery Systems , Nanoparticles , Humans , Nanomedicine , Nanotechnology , Pharmaceutical Preparations , Nanoparticles/therapeutic use , Inflammation/drug therapy , Drug Carriers
4.
Small ; 20(5): e2305094, 2024 Feb.
Article En | MEDLINE | ID: mdl-37786309

Plastic waste is ubiquitously present across the world, and its nano/sub-micron analogues (plastic nanoparticles, PNPs), raise severe environmental concerns affecting organisms' health. Considering the direct and indirect toxic implications of PNPs, their biological impacts are actively being studied; lately, with special emphasis on cellular and molecular mechanistic intricacies. Combinatorial OMICS studies identified proteins as major regulators of PNP mediated cellular toxicity via activation of oxidative enzymes and generation of ROS. Alteration of protein function by PNPs results in DNA damage, organellar dysfunction, and autophagy, thus resulting in inflammation/cell death. The molecular mechanistic basis of these cellular toxic endeavors is fine-tuned at the level of structural alterations in proteins of physiological relevance. Detailed biophysical studies on such protein-PNP interactions evidenced prominent modifications in their structural architecture and conformational energy landscape. Another essential aspect of the protein-PNP interactions includes bioenzymatic plastic degradation perspective, as the interactive units of plastics are essentially nano-sized. Combining all these attributes of protein-PNP interactions, the current review comprehensively documented the contemporary understanding of the concerned interactions in the light of cellular, molecular, kinetic/thermodynamic details. Additionally, the applicatory, economical facet of these interactions, PNP biogeochemical cycle and enzymatic advances pertaining to plastic degradation has also been discussed.


Microplastics , Phagocytosis
5.
Cell Mol Life Sci ; 80(9): 255, 2023 Aug 17.
Article En | MEDLINE | ID: mdl-37589751

Cardiotoxicity remains a major limitation in the clinical utility of anthracycline chemotherapeutics. Regulator of G-protein Signaling 7 (RGS7) and inflammatory markers are up-regulated in the hearts of patients with a history of chemotherapy particularly those with reduced left-ventricular function. RGS7 knockdown in either the murine myocardium or isolated murine ventricular cardiac myocytes (VCM) or cultured human VCM provided marked protection against doxorubicin-dependent oxidative stress, NF-κB activation, inflammatory cytokine production, and cell death. In exploring possible mechanisms causally linking RGS7 to pro-inflammatory signaling cascades, we found that RGS7 forms a complex with acetylase Tip60 and deacetylase sirtuin 1 (SIRT1) and controls the acetylation status of the p65 subunit of NF-κB. In VCM, the detrimental impact of RGS7 could be mitigated by inhibiting Tip60 or activating SIRT1, indicating that the ability of RGS7 to modulate cellular acetylation capacity is critical for its pro-inflammatory actions. Further, RGS7-driven, Tip60/SIRT1-dependent cytokines released from ventricular cardiac myocytes and transplanted onto cardiac fibroblasts increased oxidative stress, markers of transdifferentiation, and activity of extracellular matrix remodelers emphasizing the importance of the RGS7-Tip60-SIRT1 complex in paracrine signaling in the myocardium. Importantly, while RGS7 overexpression in heart resulted in sterile inflammation, fibrotic remodeling, and compromised left-ventricular function, activation of SIRT1 counteracted the detrimental impact of RGS7 in heart confirming that RGS7 increases acetylation of SIRT1 substrates and thereby drives cardiac dysfunction. Together, our data identify RGS7 as an amplifier of inflammatory signaling in heart and possible therapeutic target in chemotherapeutic drug-induced cardiotoxicity.


Cardiotoxicity , RGS Proteins , Humans , Animals , Mice , Acetylation , NF-kappa B , Sirtuin 1/genetics , Arrhythmias, Cardiac , Myocytes, Cardiac , RGS Proteins/genetics
6.
Chemosphere ; 332: 138877, 2023 Aug.
Article En | MEDLINE | ID: mdl-37164191

With the advent of the industrial revolution, the accumulation of persistent organic pollutants (POPs) in the environment has become ubiquitous. POPs are halogen-containing organic molecules that accumulate, and remain in the environment for a long time, thus causing toxic effects in living organisms. POPs exhibit a high affinity towards biological macromolecules such as nucleic acids, proteins and lipids, causing genotoxicity and impairment of homeostasis in living organisms. Proteins are essential members of the biological assembly, as they stipulate all necessary processes for the survival of an organism. Owing to their stereochemical features, POPs and their metabolites form energetically favourable complexes with proteins, as supported by biological and dose-dependent toxicological studies. Although individual studies have reported the biological aspects of protein-POP interactions, no comprehensive study summarizing the structural mechanisms, thermodynamics and kinetics of protein-POP complexes is available. The current review identifies and classifies protein-POP interaction according to the structural and functional basis of proteins into five major protein targets, including digestive and other enzymes, serum proteins, transcription factors, transporters, and G-protein coupled receptors. Further, analysis detailing the molecular interactions and structural mechanism evidenced that H-bonds, van der Waals, and hydrophobic interactions essentially mediate the formation of protein-POP complexes. Moreover, interaction of POPs alters the protein conformation through kinetic and thermodynamic processes like competitive inhibition and allostery to modulate the cellular signalling processes, resulting in various pathological conditions such as cancers and inflammations. In summary, the review provides a comprehensive insight into the critical structural/molecular aspects of protein-POP interactions.


Environmental Pollutants , Persistent Organic Pollutants , Organic Chemicals/chemistry , Environmental Pollutants/chemistry
7.
J Agric Food Chem ; 71(12): 4990-5005, 2023 Mar 29.
Article En | MEDLINE | ID: mdl-36942659

Leukocyte recruitment witnesses an orchestrated complex formation between the chemokines and their molecular partners. CCL2 chemokine that regulates monocyte trafficking is a worthwhile system from the pharmaceutical perspective. In the current study, four major catechins (EC/EGC/ECG/EGCG) were assessed for their inhibitory potential against CCL2-regulated monocyte/macrophage recruitment. Interestingly, catechins with the gallate moiety (ECG/EGCG) could only attenuate the CCL2-induced macrophage migration. These molecules specifically bound to CCL2 on a pocket comprising the N-terminal, ß0-sheets, and ß3-sheets, and the binding affinity of ECGC (Kd = 22 ± 4 µM) is ∼4 times higher than that of the ECG complex (Kd = 85 ± 6 µM). MD simulation analysis evidenced that the molecular specificity/stability of CCL2-catechin complexes is regulated by multiple factors, including stereospecificity, number of hydroxyl groups on the annular ring-B, the positioning of the carbonyl group, and the methylation of the galloyl ring. Further, a significant overlap on the binding surface of CCL2 for EGCG/ECG and receptor interactions as evidenced from NMR data provided the rationale for the observed inhibition of macrophage migration in response to EGCG/ECG binding. In summary, these galloylated epicatechins can be considered as potent protein-protein interaction (PPI) inhibitors that regulate CCL2-directed leukocyte recruitment for resolving inflammatory/immunomodulatory disorders.


Catechin , Chemokine CCL2 , Chemokine CCL2/genetics , Catechin/chemistry , Monocytes , Magnetic Resonance Spectroscopy , Computer Simulation
8.
Cancers (Basel) ; 14(17)2022 Aug 29.
Article En | MEDLINE | ID: mdl-36077715

The present study employed nanoparticle tracking analysis, transmission electron microscopy, immunoblotting, RNA sequencing, and quantitative real-time PCR validation to characterize serum-derived small extracellular vesicles (sEVs) from RB patients and age-matched controls. Bioinformatics methods were used to analyze functions, and regulatory interactions between coding and non-coding (nc) sEVs RNAs. The results revealed that the isolated sEVs are round-shaped with a size < 150 nm, 5.3 × 1011 ± 8.1 particles/mL, and zeta potential of 11.1 to −15.8 mV, and expressed exosome markers CD9, CD81, and TSG101. A total of 6514 differentially expressed (DE) mRNAs, 123 DE miRNAs, and 3634 DE lncRNAs were detected. Both miRNA-mRNA and lncRNA-miRNA-mRNA network analysis revealed that the cell cycle-specific genes including CDKNI1A, CCND1, c-MYC, and HIF1A are regulated by hub ncRNAs MALAT1, AFAP1-AS1, miR145, 101, and 16-5p. Protein-protein interaction network analysis showed that eye-related DE mRNAs are involved in rod cell differentiation, cone cell development, and retinol metabolism. In conclusion, our study provides a comprehensive overview of the RB sEV RNAs and regulatory interactions between them.

9.
ACS Omega ; 7(17): 15231-15246, 2022 May 03.
Article En | MEDLINE | ID: mdl-35572751

Prokaryotic cells lack a proper dedicated nuclear arrangement machinery. A set of proteins known as nucleoid associated proteins (NAPs) perform opening and closure of nucleic acids, behest cellular requirement. Among these, a special class of proteins analogous to eukaryotic histones popularly known as histone-like (HU) DNA binding proteins facilitate the nucleic acid folding/compaction thereby regulating gene architecture and gene regulation. DNA compaction and DNA protection in Helicobacter pylori is performed by HU protein (Hup). To dissect and galvanize the role of proline residue in the binding of Hup with DNA, the structure-dynamics-functional relationship of Hup-P64A variant was analyzed. NMR and biophysical studies evidenced that Hup-P64A protein attenuated DNA-binding and induced structural/stability changes in the DNA binding domain (DBD). Moreover, molecular dynamics simulations and 15N relaxation studies established the reduced conformational dynamics of P64A protein. This comprehensive study dissected the exclusive role of evolutionarily conserved apical proline residue in regulating the structure and DNA binding of Hup protein as P64 is presumed to be involved in the external leverage mechanism responsible for DNA bending and packaging, as proline rings wedge into the DNA backbone through intercalation besides their significant role in DNA binding.

10.
Sci Total Environ ; 827: 154219, 2022 Jun 25.
Article En | MEDLINE | ID: mdl-35240191

The role of sea birds as carriers of pollutants over long distances was evaluated by analyzing organochlorine and organobromine compounds in lake sediment cores from three remote sites around the North Water polynya (North West Greenland). One lake, NOW5, was in the vicinity of a little auk (Alle alle L.) bird colony, whereas the other two lakes, NOW14 and Q5, were undisturbed by seabirds. The former was strongly acidic (pH = 3.4) but the latter had a pH close to 8. Due to the guano loading, NOW5 exhibited higher chlorophyll concentrations (74 µg/L) than the other two lakes (1.6-3.4 µg/L), higher content of total phosphorous (0.34 mg/L vs. 0.007-0.01 mg/L) and total nitrogen (3.75 mg/L vs. 0.21-0.75 mg/L). The concentrations of all organohalogen compounds were substantially greater in NOW5 than in the other lakes, indicating the strong influence of these seabirds in the transport and deposition of these compounds to remote sites. However, not all compounds showed the same increases. Hexachlorocyclohexanes and endosulfans were more than 18 times higher in NOW5, the drin pesticides and hexachlorobenzene (HCB), between 9.5 and 18 times and DDTs, polybromodiphenyl ethers (PBDEs), polychlorobiphenyls (PCBs) and chlordanes about 2.7-6 times. These differences demonstrated that the bird-mediated deposition has preservation effects of the less stable and more volatile compounds, e.g. those with log Kaw < -2.4, log Koa < 9 and/or log Kow < 6.8. The sedimentary fluxes of PCBs, HCHs, drins, chlordanes, PBDEs, HCB and endosulfans were highest in the upper sediment layer of the polynya lake (year 2014). In contrast, the highest DDT fluxes were found in 1980. These trends indicate that despite restrictions and regulations, bird transport continues to introduce considerable amounts of organohalogen pollutants to the Arctic regions with the exception of DDTs, which show successful decline, even when mediated by bird metabolism.


Charadriiformes , Environmental Pollutants , Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Environmental Monitoring , Environmental Pollutants/analysis , Greenland , Halogenated Diphenyl Ethers , Hexachlorobenzene/analysis , Hydrocarbons, Chlorinated/analysis , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis
11.
Biochemistry ; 60(43): 3236-3252, 2021 11 02.
Article En | MEDLINE | ID: mdl-34665609

The summarized amalgam of internal relaxation modulations and external forces like pH, temperature, and solvent conditions determine the protein structure, stability, and function. In a free-energy landscape, although conformers are arranged in vertical hierarchy, there exist several adjacent parallel sets with conformers occupying equivalent energy cleft. Such conformational states are pre-requisites for the functioning of proteins that have oscillating environmental conditions. As these conformational changes have utterly small re-arrangements, nuclear magnetic resonance (NMR) spectroscopy is unique in elucidating the structure-dynamics-stability-function relationships for such conformations. Helicobacter pylori survives and causes gastric cancer at extremely low pH also. However, least is known as to how the genome of the pathogen is protected from reactive oxygen species (ROS) scavenging in the gut at low pH under acidic stress. In the current study, biophysical characteristics of H. pylori DNA binding protein (Hup) have been elucidated at pH 2 using a combination of circular dichroism, fluorescence, NMR spectroscopy, and molecular dynamics simulations. Interestingly, the protein was found to have conserved structural features, differential backbone dynamics, enhanced stability, and DNA binding ability at low pH as well. In summary, the study suggests the partaking of Hup protein even at low pH in DNA protection for maintaining the genome integrity.


Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Helicobacter pylori/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Carrier Proteins/metabolism , Circular Dichroism/methods , DNA/chemistry , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Entropy , Fluorescence , Helicobacter pylori/pathogenicity , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy/methods , Molecular Conformation , Molecular Dynamics Simulation , Reactive Oxygen Species/metabolism , Solvents/chemistry , Temperature
12.
ACS Omega ; 6(15): 10306-10317, 2021 Apr 20.
Article En | MEDLINE | ID: mdl-34056184

Owing to the astounding biological properties, dietary plant flavonoids have received considerable attention toward developing unique supplementary food sources to prevent various ailments. Chemokines are chemotactic proteins involved in leukocyte trafficking through their interactions with G-protein-coupled receptors and cell surface glycosaminoglycans (GAGs). CCL2 chemokine, a foremost member of CC chemokines, is associated with the pathogenesis of various inflammatory infirmities, thus making the CCL2-Receptor (CCR2)/GAG axis a potential pharmacological target. The current study is designed to unravel the structural details of CCL2-flavonol interactions. Molecular interactions between flavonols (kaempferol, quercetin, and myricetin) with human/murine CCL2 orthologs and their monomeric/dimeric variants were systematically investigated using a combination of biophysical approaches. Fluorescence studies have unveiled that flavonols interact with CCL2 orthologs specifically but with differential affinities. The dissociation constants (K d) were in the range of 10-5-10-7 µM. The NMR- and computational docking-based outcomes have strongly suggested that the flavonols interact with CCL2, comprising the N-terminal and ß1- and ß3-sheets. It has also been observed that the number of hydroxyl groups on the annular ring-B imposed a significant cumulative effect on the binding affinities of flavonols for CCL2 chemokine. Further, the binding surface of these flavonols to CCL2 orthologs was observed to be extensively overlapped with that of the receptor/GAG-binding surface, thus suggesting attenuation of CCL2-CCR2/GAG interactions in their presence. Considering the pivotal role of CCL2 during monocyte/macrophage trafficking and the immunomodulatory features of these flavonols, their direct interactions highlight the promising role of flavonols as nutraceuticals.

13.
J Food Sci Technol ; 57(7): 2414-2422, 2020 Jul.
Article En | MEDLINE | ID: mdl-32549591

Apium graveolens L. (Apiaceae) is a dietary herb used as a spice, condiment and medicine. A. graveolens (Celery) has been studied for its antimicrobial property and for its application as flavours in food industry. The present study investigated the Apium graveolens oleoresin as an anti-quorum sensing and antibiofilm agent. The quorum sensing and biofilm inhibition study was carried out using biosensor strains Chromobacterium violaceum CV12472 and Pseudomonas aeruginosa PAO1. The MIC of celery oleoresin against C. violaceum CV12472 and P. aeruginosa PAO1 was 10 and 25% v/v, respectively. Inhibition of violacein and biofilm formation was tested at concentrations of oleoresins ranging from 1.56 and 50% v/v. The oleoresins showed a concentration dependent QS inhibitory activity and at sub-MIC of 6.25 and 12.5% v/v, the oleoresins significantly inhibited violacein production and biofilm formation (p < 0.05). Similarly, the celery oleoresin had significant QS modulatory effect on swimming, swarming and twitching motility in P. aeruginosa PAO1 at 12.5% v/v (p < 0.05). The major phytoconstituents present in celery oleoresin as analysed by GC-MS were eicosadiene, benzenemethanol and methyl ester which have not been previously reported. The findings suggest that celery has QS and biofilm inhibitory potential against gram negative pathogens and can find application as food intervention techniques.

14.
Int J Biol Macromol ; 156: 239-251, 2020 Aug 01.
Article En | MEDLINE | ID: mdl-32289428

Chemokines are a sub-group of cytokines that regulate the leukocyte migration. Monocyte chemoattractant protein-1 (MCP/CCL2) is one of the essential CC chemokine that regulates the migration of monocytes into inflamed tissues. It has been observed that the primary sequences of CCL2 orthologs among rodents and primates vary significantly at the C-terminal region. However, no structural details are available for the rodentia family CCL2 proteins. The current study unravelled the structural, dynamics and in-silico functional characteristics of murine CCL2 chemokine using a comprehensive set of NMR spectroscopy techniques and evolutionary approaches. The study unravelled that the N-terminal portion of the murine CCL2 forms a canonical CC chemokine dimer similar to that of human CCL2. However, unlike human CCL2, the murine ortholog exhibits extensive dynamics in the µs-ms timescales. The presence of C-terminal region of the murine CCL2 protein/rodentia family is highly glycosylated, completely disordered, and inhibits the folding of the structured CCL2 regions. Further, it has been observed that the glycosaminoglycan binding surfaces of these orthologs proteins are greatly differed. In a nut shell, this comparative study provided the role of molecular evolution in generating orthologous proteins with differential structural and dynamics characteristics to engage them in specific molecular interactions.


Chemokine CCL2/chemistry , Models, Molecular , Protein Conformation , Amino Acid Sequence , Animals , Binding Sites , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chemokines/chemistry , Chemokines/metabolism , Cloning, Molecular , Evolution, Molecular , Gene Expression , Magnetic Resonance Spectroscopy , Mice , Phylogeny , Protein Binding , Protein Multimerization , Recombinant Proteins , Spectrum Analysis , Structure-Activity Relationship
...