Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Photochem Photobiol B ; 183: 1-10, 2018 Jun.
Article En | MEDLINE | ID: mdl-29679688

Nanoparticles of some of the metal oxides are known to have high UV protective efficiency. The UV filtering efficiency of nanoparticles invariably depends on their size and stability in the dispersion. In the present work, a stable dispersion of nanoparticles of three metal oxides, zinc oxide (ZnO), cerium oxide (CeO2) and titanium dioxide (TiO2), was prepared in propylene glycol (PG) using ultrasonication. The method is easy and useful as no additional surfactant or dispersant is needed. The particle size and its distribution was confirmed by Scanning Electron Microscopy and Dynamic Light Scattering. The stability of dispersion was assessed by UV-visible absorption spectroscopy. The UV stability of wood surfaces of Wrightia tinctoria coated with nanodispersions of ZnO, CeO2 and TiO2 was evaluated under laboratory conditions in an accelerated weathering tester. Changes in the colour and FTIR spectra of exposed specimens were measured periodically. Rapid colour darkening (yellowing) was observed in uncoated and PG coated specimens. In contrast, nanodispersion coated specimens prevented photo-yellowing considerably with significant reduction in colour changes examined by CIE L*, a*, b* and ΔE*. Increase in concentration of nanoparticles in the dispersion imparted higher resistance to UV induced degradation. However, increased concentration of nanoparticles reduced the transparency of the coating. FTIR analysis indicated rapid degradation of lignin in uncoated and PG coated specimens due to UV exposure. Coating of wood surfaces with nanodispersions restricted lignin degradation. The study also demonstrates the potential of propylene glycol as a dispersant for developing stable and efficient UV protective nanodispersions for wood coating.


Cerium/chemistry , Metal Nanoparticles/chemistry , Propylene Glycol/chemistry , Titanium/chemistry , Ultraviolet Rays , Zinc Oxide/chemistry , Dynamic Light Scattering , Microscopy, Electron, Scanning , Particle Size , Photolysis/radiation effects , Spectroscopy, Fourier Transform Infrared , Wood/chemistry
2.
J Photochem Photobiol B ; 155: 20-7, 2016 Feb.
Article En | MEDLINE | ID: mdl-26722999

Chemical modification of Rubberwood (Hevea brasiliensis Müll.Arg) with isopropenyl acetate (IPA) in the presence of anhydrous aluminum chloride as a catalyst has been carried out under solvent free conditions. The level of modification was estimated by determining the weight percent gain and modified wood was characterized by FTIR-ATR and CP/MAS (13)C NMR spectroscopy. The effect of catalyst concentration on WPG was studied. UV resistance, moisture adsorption and dimensional stability of modified wood were evaluated. UV resistance of modified wood was evaluated by exposing unmodified and modified wood to UV irradiation in a QUV accelerated weathering tester. Unmodified wood showed rapid color changes and degradation of lignin upon exposure to UV light. Chemical modification of wood polymers with IPA was effective in reducing light induced color changes (photo-yellowing) at wood surfaces. In contrast to unmodified wood, modified wood exhibited bleaching. FTIR analysis of modified wood exposed to UV light indicated stabilization of wood polymers against UV degradation. Modified wood showed good dimensional stability and hydrophobicity. Thermogravimetric analysis showed that modification with IPA improved thermal stability of wood. Improved dimensional stability and UV resistance of modified wood indicates IPA as a promising reagent since there is no acid byproduct of reaction as observed in case of other esterification reactions.


Acetates/chemistry , Ultraviolet Rays , Wood/chemistry , Aluminum Chloride , Aluminum Compounds/chemistry , Catalysis , Chlorides/chemistry , Color , Hevea/chemistry , Lignin/chemistry , Magnetic Resonance Spectroscopy , Photolysis/radiation effects , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
...