Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(18): e202304238, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270276

RESUMEN

Saxitoxin (STX, 1) is a representative compound of paralytic shellfish toxins (PSTs) that are produced by marine dinoflagellates and freshwater cyanobacteria. Although several pathways have been proposed for the biosynthesis of STX, the order of ring and side chain hydroxylation, and formation of the tricyclic skeleton have not been well established. In this study, 12,12-dideoxy-decarbamoyloxySTX (dd-doSTX, 2), the most reduced STX analogue having the tricyclic skeleton, and its analogues, 12ß-deoxy-doSTX (12ß-d-doSTX, 3), 12α-deoxy-doSTX (12α-d-doSTX, 4), and doSTX (5), were synthesized, and these compounds were screened in the toxic microalgae using high-resolution LCMSMS. dd-doSTX (2) and 12ß-d-doSTX (3) were identified in the PSTs-producing dinoflagellates (Alexandrium catenella, A. pacificum, and/or Gymnodinium catenatum) and in the cyanobacterium Dolichospermum circinale (TA04). doSTX (5), previously isolated from the dinoflagellate G. catenatum, was also identified in D. circinale (TA04). Furthermore, the conversion of 2 to 3, and 4 to 5, by SxtT with VanB, a reported Rieske oxygenase and its redox partner in STX biosynthesis, was confirmed. These results support that 2 is a possible biosynthetic precursor of STX, and that ring and side-chain hydroxylations proceed after cyclization.


Asunto(s)
Dinoflagelados , Microalgas , Saxitoxina/análogos & derivados , Saxitoxina/química , Oxigenasas
2.
PLoS One ; 18(12): e0295288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38091304

RESUMEN

Vitamin D (VD) exerts a wide variety of biological functions including calcemic activity. VD nutritional status is closely associated with the onset and development of chronic diseases. To develop a VD analog with the desired VD activity but without calcemic activity, we screened synthetic VDR antagonists. We identified 1α,25-dihydroxyvitamin D3-26-23-lactams (DLAM)-2a-d (DLAM-2s) as nuclear vitamin D receptor (VDR) ligands in a competitive VDR binding assay for 1α,25(OH)2 vitamin D3 (1α,25(OH)2D3), and DLAM-2s showed an antagonistic effect on 1α,25(OH)2 D3-induced cell differentiation in HL60 cells. In a luciferase reporter assay in which human VDR was exogenously expressed in cultured COS-1 cells, DLAM-2s acted as transcriptional antagonists. Consistently, DLAM-2s had an antagonistic effect on the 1α,25(OH)2D3-induced expression of a known VD target gene [Cytochrome P450 24A1 (CYP24A1)], and VDR bound DLAM-2s was recruited to an endogenous VD response element in chromatin in human keratinocytes (HaCaT cells) endogenously expressing VDR. In an ATAC-seq assay, the effects of 1α,25(OH)2 D3 and DLAM-2b on chromatin reorganization were undetectable in HaCaT cells, while the effect of an androgen receptor (AR) antagonist (bicalutamide) was confirmed in prostate cancer cells (LNCaP) expressing endogenous AR. However, whole genome analysis using RNA-seq and ATAC (Assay for Transposase Accessible Chromatin)-seq revealed differential gene expression profiles regulated by DLAM-2b versus 1α,25(OH)2D3. The upregulated and downregulated genes only partially overlapped between cells treated with 1α,25(OH)2D3 and those treated with DLAM-2b. Thus, the present findings illustrate a novel VDR ligand with gene regulatory activity differing from that of 1α,25(OH)2D3.


Asunto(s)
Receptores de Calcitriol , Vitamina D , Masculino , Humanos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Ligandos , Vitamina D/farmacología , Vitaminas , Cromatina , Vitamina D3 24-Hidroxilasa/genética
3.
J Bone Metab ; 30(3): 219-229, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37718900

RESUMEN

Vitamin D (VD) exerts a wide variety of biological actions in addition to its well-known roles in calcium homeostasis. Nutritional VD deficiency induces rachitic abnormalities in growing children and osteomalacia in adults, and it has been proposed to underlie the onset and development of multiple non-communicable chronic diseases. Therefore, the administration of VD or synthetic VD analogues represents a promising therapeutic strategy; indeed, VD and a VD agonist have shown clinical promise in mitigating osteoporosis and symptoms of insufficient calcium intake. However, even though high doses of VD analogues have shown pre-clinical efficacy against several diseases, including cancers, they have not yet had wide-spread clinical success. This difference may be due to limitation of clinical doses in light of the inherent calcemic action of VD. An approach to overcome this problem involves the development of VD analogues with lower calcemic activity, which could be administered in high doses to attenuate the onset and progress of disease. In a similar strategy, selective estrogen receptor modulators have had success as anti-osteoporosis drugs, and they have shown benefit for other estrogen target organs by serving as partial antagonists or agonists of estrogen receptor α. It is thus conceivable to generate synthetic partial antagonists or agonists for the VD receptor (VDR) that would exert beneficial effects on bone and other VD target organs. In this review, we discuss the molecular basis of the development of such synthetic VDR ligands from the viewpoint of roles of VDR in gene regulation.

4.
Biomolecules ; 13(7)2023 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-37509072

RESUMEN

Vitamin D3 (1) is metabolized by various cytochrome P450 (CYP) enzymes, resulting in the formation of diverse metabolites. Among them, 4α,25-dihydroxyvitamin D3 (6a) and 4ß,25-dihydroxyvitamin D3 (6b) are both produced from 25-hydroxyvitamin D3 (2) by CYP3A4. However, 6b is detectable in serum, whereas 6a is not. We hypothesized that the reason for this is a difference in the susceptibility of 6a and 6b to CYP24A1-mediated metabolism. Here, we synthesized 6a and 6b, and confirmed that 6b has greater metabolic stability than 6a. We also identified 4α,24R,25- and 4ß,24R,25-trihydroxyvitamin D3 (16a and 16b) as metabolites of 6a and 6b, respectively, by HPLC comparison with synthesized authentic samples. Docking studies suggest that the ß-hydroxy group at C4 contributes to the greater metabolic stability of 6b by blocking a crucial hydrogen-bonding interaction between the C25 hydroxy group and Leu325 of CYP24A1.


Asunto(s)
Colecalciferol , Vitamina D , Vitamina D3 24-Hidroxilasa/genética , Vitamina D3 24-Hidroxilasa/metabolismo , Sistema Enzimático del Citocromo P-450 , Cromatografía Líquida de Alta Presión
5.
Chem Commun (Camb) ; 59(57): 8862-8865, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37377065

RESUMEN

Thrombin-binding aptamer (TBA), which forms a G-quadruplex (G4) structure with anti-parallel topology, interacts with thrombin to inhibit its enzymatic activity. Here we show that the G4-topology-altering ligand L2H2-2M2EA-6LCO (6LCO) changes the anti-parallel topology of TBA G4 to the parallel topology, thereby abrogating the thrombin-inhibitory activity of TBA. This finding suggests that G4 ligands that alter topology may be promising drug candidates for diseases involving G4-binding proteins.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Trombina/química , Ligandos , Aptámeros de Nucleótidos/química
6.
J Org Chem ; 88(14): 10223-10231, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37378952

RESUMEN

Zetekitoxin AB (ZTX), a member of the saxitoxin (STX) family isolated from the Panamanian golden frog Atelopus zeteki, shows extremely potent NaV-inhibitory activity. Here, we investigate the synthesis of 12-membered ring structure with the C11 tertiary hydroxyl group in ZTX by means of the Mislow-Evans rearrangement reaction and subsequent ring-closing metathesis reaction. Although this approach did not provide access to the 12-membered macrocycle, we obtained a new STX analog with an 18-membered macrolactam structure as a synthetic mimic of ZTX.

7.
Chem Commun (Camb) ; 59(28): 4217-4220, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36939650

RESUMEN

We describe a 1,3-boron shift-type reaction of homoallenylboronates at the center (sp) carbon in allenes to afford 2-boryl-1,3-dienes with a variety of substituents. Notably, this reaction occurs in situ with allenylboronates in the presence of carbamate and a small excess of sec-BuLi, and it is not necessary to isolate the unstable homoallenylboronates.

8.
Chem Rec ; 23(7): e202300030, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36949010

RESUMEN

This account describes our recent work on developing guanidinium hypoiodite- catalysts for oxidative carbon-nitrogen and carbon-carbon bond-forming reactions. These reactions proceeded smoothly using guanidinium hypoiodite generated in situ by treating 1,3,4,6,7-hexahydro-2H-pyrimido[1,2-a]pyrimidine hydroiodide salts with an oxidant. In this approach, the ionic interaction and hydrogen bonding ability of the guanidinium cations enable bond-forming reactions that have been difficult with conventional methods. Enantioselective oxidative carbon-carbon bond-forming reaction was also achieved by using a chiral guanidinium organocatalyst.


Asunto(s)
Compuestos de Yodo , Guanidina , Catálisis , Oxidación-Reducción
9.
J Org Chem ; 88(12): 7660-7673, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-36702628

RESUMEN

Spiro[indoline-3,4'-piperidine] is a fundamental motif present in various biologically active compounds. Here, we report an intramolecular oxidative coupling reaction of oxindoles with ß-dicarbonyls in the presence of a guanidinium hypoiodite catalyst, providing spiro-coupling products in moderate to excellent yields. Furthermore, a chiral hypoiodite catalyst derived from the chiral guanidinium organocatalyst is effective for the challenging asymmetric carbon-carbon bond-forming reaction, affording optically active spiro[indoline-3,4'-piperidines].


Asunto(s)
Compuestos de Espiro , Estructura Molecular , Acoplamiento Oxidativo , Oxindoles , Guanidina , Estereoisomerismo , Catálisis
10.
Anal Chem ; 94(32): 11144-11150, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35938415

RESUMEN

Saxitoxin (STX) is a potent neurotoxin that is biosynthesized by toxic dinoflagellates and accumulated in shellfish via the food chain. STX and its various analogues are now monitored in shellfish by the hygiene authorities in many countries with instrumental analytical methods, which require calibration with standards. Unfortunately, STX is registered as a chemical warfare agent in Schedule 1 of the Chemical Weapons Convention, and this has made it difficult to import calibration standards into some countries. We aimed to avoid violation of the Chemical Weapons Convention and facilitate analyses by preparing calibration standards based on unnatural nontoxic antipodal STXs (ent-STXs) with the same physicochemical properties as natural STXs. Our findings demonstrate that the nontoxic ent-STXs can be safely utilized as alternative reference materials of STXs in the routine monitoring program by the local authorities and consequently can lead to reduced usage of STX.


Asunto(s)
Dinoflagelados , Saxitoxina , Neurotoxinas/análisis , Estándares de Referencia , Saxitoxina/análisis , Saxitoxina/toxicidad , Alimentos Marinos/análisis
11.
J Org Chem ; 87(12): 8084-8098, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35671244

RESUMEN

Vinylboronic esters and allylboronic esters are well known to afford olefins by protodeboronation, and therefore homoallenylboronic esters should be similarly available as precursors for 1,3-dienes, but this strategy has not been well explored due to the limited availability of homoallenylboronic esters. Here, we describe a versatile synthesis of homoallenylboronic esters via lithiation-borylation and subsequent 1,2-rearrangement. The resulting homoallenylboronic esters were successfully converted into Z- and E-1,3-dienes by protodeboronation using Bu4NF and B(C6F5)3/PhOH, respectively.


Asunto(s)
Ésteres , Polienos , Alquenos
12.
ACS Chem Biol ; 17(7): 1703-1713, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35765965

RESUMEN

We previously reported that the formation of guanine-quadruplex (G4) structures provides phosphodiester oligodeoxynucleotides containing unmethylated cytosine-phosphate-guanine (CpG ODNs) with higher nuclease resistance and cellular uptake, thereby increasing their immunostimulation efficiency through TLR9 activation. CpG ODNs forming G4 structures (G4 CpG ODNs) are thus potential vaccine adjuvants against infectious diseases. However, the G4 structure changes topology depending on the surrounding environment. Recently, G4 ligands, which are small molecules that bind to G4 ODNs with high affinity, were reported to improve the stability of G4. In this study, we propose to increase the stability and function of G4 CpG ODNs using G4 ligands. We show the effects of two G4 ligands, named L2H2-6OTD (L2H2) and L2G2-2M2EG-6OTD (L2G2), on the topology, stability, and immunostimulatory properties of a monomeric hybrid-type G4 CpG ODN containing CpG motifs in the central loop, named GD3. We found that L2H2 helps maintain the hybrid G4 topology of GD3, whereas L2G2 induces parallel G4 formation. Both G4 ligands increase the thermodynamic and nuclease stability of GD3. However, only GD3 associated with L2H2 binds efficiently to TLR9 and evokes a higher immune response from mouse macrophage-like RAW264 cells. GD3 associated with L2G2 does not bind efficiently to TLR9 and elicits lower cytokine production. Our results demonstrate that the potential to enhance immunostimulatory properties depends on the ability of G4 ligands to maintain and stabilize the hybrid G4 of GD3. We anticipate that our findings will facilitate the development of more effective G4 CpG ODN-based vaccine adjuvants against infectious diseases.


Asunto(s)
Enfermedades Transmisibles , Receptor Toll-Like 9 , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Animales , Guanina , Inmunización , Ratones , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/farmacología , Receptor Toll-Like 9/metabolismo
13.
Anal Biochem ; 649: 114693, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35500657

RESUMEN

Binding between a ligand and a receptor is a fundamental step in many natural or synthetic processes. In biosensing, a tight binding with a small dissociation constant (Kd) between the probe and analyte can lead to superior specificity and sensitivity. Owing to their capability of evaluating competitors, displacement assays have been used to estimate Kd at the ensemble average level. At the more sensitive single-molecule level, displacement assays are yet to be established. Here, we developed a single-molecule displacement assay (smDA) in an optical tweezers instrument and used this innovation to evaluate the binding of the L2H2-6OTD ligands to human telomeric DNA G-quadruplexes. After measuring Kd of linear and dendrimer L2H2-6OTD ligands, we found that dendrimer ligands have enhanced binding affinity to the G-quadruplexes due to their polyvalent geometry. This increased binding affinity enhanced inhibition of telomerase elongation on a telomere template in a Telomerase Repeated Amplification Protocol (TRAP). Our experiments demonstrate that the smDA approach can efficiently evaluate binding processes in chemical and biological processes.


Asunto(s)
Dendrímeros , G-Cuádruplex , Telomerasa , Humanos , Ligandos , Telomerasa/metabolismo , Telómero/metabolismo
14.
Molecules ; 27(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35458625

RESUMEN

Blood levels of the vitamin D3 (D3) metabolites 25-hydroxyvitamin D3 (25(OH)D3), 24R,25-dihydroxyvitamin D3, and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) are recognized indicators for the diagnosis of bone metabolism-related diseases, D3 deficiency-related diseases, and hypercalcemia, and are generally measured by liquid-chromatography tandem mass spectrometry (LC-MS/MS) using an isotope dilution method. However, other D3 metabolites, such as 20-hydroxyvitamin D3 and lactone D3, also show interesting biological activities and stable isotope-labeled derivatives are required for LC-MS/MS analysis of their concentrations in serum. Here, we describe a versatile synthesis of deuterium-labeled D3 metabolites using A-ring synthons containing three deuterium atoms. Deuterium-labeled 25(OH)D3 (2), 25(OH)D3-23,26-lactone (6), and 1,25(OH)2D3-23,26-lactone (7) were synthesized, and successfully applied as internal standards for the measurement of these compounds in pooled human serum. This is the first quantification of 1,25(OH)2D3-23,26-lactone (7) in human serum.


Asunto(s)
Espectrometría de Masas en Tándem , Vitamina D , Cromatografía Liquida/métodos , Deuterio , Humanos , Lactonas , Espectrometría de Masas en Tándem/métodos , Vitamina D/metabolismo
15.
Biochem Biophys Res Commun ; 597: 134-139, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35144176

RESUMEN

N6-methyladenine (m6A) is the most abundant RNA modification in eukaryotic RNA. Further, m6A has been identified in the genomic DNA of both eukaryotes and prokaryotes. The G-quadruplex (G4) structure is a non-canonical nucleic acid structure formed by the stacking of G:G:G:G tetrads. In this study, we evaluated the effect of m6A modifications on G4 structures formed by GGA repeat oligonucleotides, d(GGA)8, d(GGA)4, and r(GGA)4. The d(GGA)8 forms an intramolecular tetrad:heptad:heptad:tetrad G4 structure, while d(GGA)4 forms a dimerized intermolecular tetrad:heptad:heptad:tetrad G4 structure. r(GGA)4 forms a dimerized intermolecular tetrad:hexad:hexad:tetrad G4 structure. Circular dichroism melting analysis demonstrated that (1) m6A modifications destabilized the G4 structure formed by d(GGA)8, (2) m6A modification at A3 disrupted the G4 structure formed by d(GGA)4, and (3) m6A modification at A3 destabilized the G4 structure formed by r(GGA)4. m6A modifications may be involved in controlling G4 structure formation to regulate biological functions.

16.
Biomolecules ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35053217

RESUMEN

The active form of vitamin D3 (D3), 1a,25-dihydroxyvitamn D3 (1,25D3), plays a central role in calcium and bone metabolism. Many structure-activity relationship (SAR) studies of D3 have been conducted, with the aim of separating the biological activities of 1,25D3 or reducing its side effects, such as hypercalcemia, and SAR studies have shown that the hypercalcemic activity of C2-substituted derivatives and 19-nor type derivatives is significantly suppressed. In the present paper, we describe the synthesis of 19-nor type 1,25D3 derivatives with alkoxy groups at C2, by means of the Julia-Kocienski type coupling reaction between a C2 symmetrical A ring ketone and a CD ring synthon. The effect of C2 substituents on the stereoselectivity of the coupling reaction was evaluated. The biological activities of the synthesized derivatives were evaluated in an HL-60 cell-based assay. The a-methoxy-substituted C2α-7a was found to show potent cell-differentiating activity, with an ED50 value of 0.38 nM, being 26-fold more potent than 1,25D3.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Colecalciferol , Colecalciferol/análogos & derivados , Colecalciferol/síntesis química , Colecalciferol/química , Colecalciferol/farmacología , Células HL-60 , Humanos , Relación Estructura-Actividad
17.
J Org Chem ; 87(2): 1065-1073, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34846150

RESUMEN

We describe enantioselective total syntheses of cepharatines A-D, members of the hasubanan alkaloid family, which feature an unusual tetracyclic skeleton including an azabicyclo[3.3.1]nonane motif. A key reaction is a regio-divergent oxidative phenolic coupling reaction that affords the tricyclic core structure of hasubanan with different substitution patterns on the A-ring, including the all-carbon quaternary stereogenic center at C13, in a single step. The characteristic tetracyclic azabicyclo[3.3.1]nonane motif was constructed by means of a bioinspired cascade reaction involving the retro-aza-Michael reaction/hemiaminal formation.


Asunto(s)
Alcaloides , Estereoisomerismo
18.
Cell Chem Biol ; 29(4): 660-669.e12, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-34506728

RESUMEN

Lactone-vitamin D3 is a major metabolite of vitamin D3, a lipophilic vitamin biosynthesized in numerous life forms by sunlight exposure. Although lactone-vitamin D3 was discovered 40 years ago, its biological role remains largely unknown. Chemical biological analysis of its photoaffinity probe identified the hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha (HADHA), a mitochondrial enzyme that catalyzes ß-oxidation of long-chain fatty acids, as its selective binding protein. Intriguingly, the interaction of lactone-vitamin D3 with HADHA does not affect the HADHA enzymatic activity but instead limits biosynthesis of carnitine, an endogenous metabolite required for the transport of fatty acids into the mitochondria for ß-oxidation. Lactone-vitamin D3 dissociates the protein-protein interaction of HADHA with trimethyllysine dioxygenase (TMLD), thereby impairing the TMLD enzyme activity essential in carnitine biosynthesis. These findings suggest a heretofore undescribed role of lactone-vitamin D3 in lipid ß-oxidation and carnitine biosynthesis, and possibly in sunlight-dependent shifts of lipid metabolism in animals.


Asunto(s)
Metabolismo de los Lípidos , Vitamina D , Animales , Carnitina , Colecalciferol , Ácidos Grasos/metabolismo , Lactonas , Oxidación-Reducción , Vitaminas
19.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34884964

RESUMEN

Genomic DNA methylation is involved in many diseases and is expected to be a specific biomarker for even the pre-symptomatic diagnosis of many diseases. Thus, a rapid and inexpensive detection method is required for disease diagnosis. We have previously reported that cytosine methylation in G-quadruplex (G4)-forming oligonucleotides develops different G4 topologies. In this study, we developed a method for detecting CpG methylation in G4-forming oligonucleotides based on the structural differences between methylated and unmethylated G4 DNAs. The differences in G4 topologies due to CpG methylation can be discriminated by G4 ligands. We performed a binding assay between methylated or unmethylated G4 DNAs and G4 ligands. The binding abilities of fluorescent G4 ligands to BCL-2, HRAS1, HRAS2, VEGF G4-forming sequences were examined by fluorescence-based microtiter plate assay. The differences in fluorescence intensities between methylated and unmethylated G4 DNAs were statistically significant. In addition to fluorescence detection, the binding of G4 ligand to DNA was detected by chemiluminescence. A significant difference was also detected in chemiluminescence intensity between methylated and unmethylated DNA. This is the first study on the detection of CpG methylation in G4 structures, focusing on structural changes using G4 ligands.


Asunto(s)
Islas de CpG , Metilación de ADN , ADN/metabolismo , G-Cuádruplex , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , ADN/química , Humanos , Ligandos , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteínas Proto-Oncogénicas p21(ras)/química , Factor A de Crecimiento Endotelial Vascular/química
20.
Org Biomol Chem ; 19(37): 8035-8040, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34492672

RESUMEN

Oxazole-type fluorophores show an increase of fluorescence intensity upon interaction with nucleic acids, and therefore can be used as tools for nucleic acid-sensing and fluorescence imaging. Here, we developed a novel stilbene-type fluorophore, MO-VN (1), consisting of a mono oxazole bearing a vinyl naphthalene moiety. This compound (1) was embedded in a trioxazole 2 and a cyclic hexaoxazole 3a. The fluorescence properties of 1, 2, and 3a were evaluated in the presence of various nucleic acid sequences. Compound 3 showed significant fluorescent enhancement upon interacting with G-quadruplex (G4) structure, which plays critical roles in various biological phenomena. Further structural development focusing on the vinyl naphthalene moiety of 3a afforded a turn-on type G4 ligand 3e that shows G4-specific fluorescence. Measurement of the fluorescence of 3e during titration of a telomeric DNA, telo24, with its C-rich complementary sequence, which unwinds the G4 structure, allowed us to monitor the dynamics of G4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA