Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Dev Dis ; 10(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37367412

RESUMEN

BACKGROUND: Visceral fat produces inflammatory cytokines and may play a major role in heart failure with preserved ejection fraction (HFpEF). However, little data exist regarding how qualitative and quantitative abnormalities of visceral fat would contribute to left ventricular diastolic dysfunction (LVDD). METHODS: We studied 77 participants who underwent open abdominal surgery for intra-abdominal tumors (LVDD, n = 44; controls without LVDD, n = 33). Visceral fat samples were obtained during the surgery, and mRNA levels of inflammatory cytokines were measured. Visceral and subcutaneous fat areas were measured using abdominal computed tomography. RESULTS: Patients with significant LVDD had greater LV remodeling and worse LVDD than controls. While body weight, body mass index, and subcutaneous fat area were similar in patients with LVDD and controls, the visceral fat area was larger in patients with LVDD than in controls. The visceral fat area was correlated with BNP levels, LV mass index, mitral e' velocity, and E/e' ratio. There were no significant differences in the mRNA expressions of visceral adipose tissue cytokines (IL-2, -6, -8, and -1ß, TNFα, CRP, TGFß, IFNγ, leptin, and adiponectin) between the groups. CONCLUSIONS: Our data may suggest the pathophysiological contribution of visceral adiposity to LVDD.

2.
ESC Heart Fail ; 9(2): 1454-1462, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35166056

RESUMEN

AIMS: Right-sided filling pressure is elevated in some patients with heart failure (HF) and preserved ejection fraction (HFpEF). We hypothesized that right atrial pressure (RAP) would represent the cumulative burden of abnormalities in the left heart, pulmonary vasculature, and the right heart. METHODS AND RESULTS: Echocardiography was performed in 399 patients with HFpEF. RAP was estimated from inferior vena cava morphology and its respiratory change [estimated right atrial pressure (eRAP)], and patients were divided according to eRAP (3 or ≥8 mmHg). Patients with higher eRAP displayed more severe abnormalities in LV diastolic function as well as right heart structure and function than those with normal eRAP. Cardiac deaths or HF hospitalization occurred in 84 patients over a median follow-up of 19.0 months (interquartile range 6.7-36.9). The presence of higher eRAP was independently associated with an increased risk of the composite outcome (adjusted hazard ratio 2.20 vs. normal eRAP group, 95% confidence interval 1.34-3.62, P = 0.002). Kaplan-Meier curves separating the patients into four groups based on eRAP and E/e' ratio showed that event-free survival varied among the groups, providing an incremental prognostic value of eRAP over E/e' ratio. The classification and regression tree analysis demonstrated that eRAP was the strongest predictor of the outcome followed by right ventricular dimension, E/e' ratio, and estimated right ventricular systolic pressure, stratifying the patients into four risk groups (incident rate 8.8-72.2%). CONCLUSIONS: These data may provide new insights into the prognostic role of RAP in the complex pathophysiology of HFpEF and suggest the utility of eRAP for the risk stratification in patients with HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Presión Atrial/fisiología , Diástole , Insuficiencia Cardíaca/diagnóstico , Humanos , Volumen Sistólico/fisiología , Función Ventricular Izquierda/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA