Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
Angew Chem Int Ed Engl ; 62(43): e202311590, 2023 Oct 23.
Article En | MEDLINE | ID: mdl-37675854

The combination of gene therapy and immunotherapy concepts, along recent advances in DNA nanotechnology, have the potential to provide important tools for cancer therapies. We present the development of stimuli-responsive microcapsules, loaded with a viral immunogenetic agent, harnessing the immune response against the Coronavirus Disease 2019, COVID-19, to selectively attack liver cancer cells (hepatoma) or recognize breast cancer or hepatoma, by expression of green fluorescence protein, GFP. The pH-responsive microcapsules, modified with DNA-tetrahedra nanostructures, increased hepatoma permeation by 50 %. Incorporation of a GFP-encoding lentivirus vector inside the tumor-targeting pH-stimulated miRNA-triggered and Alpha-fetoprotein-dictated microcapsules enables the demonstration of neoplasm selectivity, with approximately 5,000-, 8,000- and 50,000-fold more expression in the cancerous cells, respectively. The incorporation of the SARS-CoV-2 spike protein in the gene vector promotes specific recognition of the immune-evading hepatoma by the COVID-19-analogous immune response, which leads to cytotoxic and inflammatory activity, mediated by serum components taken from vaccinated or recovered COVID-19 patients, resulting in effective elimination of the hepatoma (>85 % yield).

2.
Nat Biomed Eng ; 7(11): 1493-1513, 2023 Nov.
Article En | MEDLINE | ID: mdl-37550423

The study of cardiac physiology is hindered by physiological differences between humans and small-animal models. Here we report the generation of multi-chambered self-paced vascularized human cardiac organoids formed under anisotropic stress and their applicability to the study of cardiac arrhythmia. Sensors embedded in the cardiac organoids enabled the simultaneous measurement of oxygen uptake, extracellular field potentials and cardiac contraction at resolutions higher than 10 Hz. This microphysiological system revealed 1 Hz cardiac respiratory cycles that are coupled to the electrical rather than the mechanical activity of cardiomyocytes. This electro-mitochondrial coupling was driven by mitochondrial calcium oscillations driving respiration cycles. Pharmaceutical or genetic inhibition of this coupling results in arrhythmogenic behaviour. We show that the chemotherapeutic mitoxantrone induces arrhythmia through disruption of this pathway, a process that can be partially reversed by the co-administration of metformin. Our microphysiological cardiac systems may further facilitate the study of the mitochondrial dynamics of cardiac rhythms and advance our understanding of human cardiac physiology.


Biochemical Phenomena , Myocytes, Cardiac , Animals , Humans , Myocytes, Cardiac/metabolism , Arrhythmias, Cardiac , Myocardial Contraction/physiology , Organoids
3.
Elife ; 122023 01 27.
Article En | MEDLINE | ID: mdl-36705566

Background: Viral infection is associated with a significant rewire of the host metabolic pathways, presenting attractive metabolic targets for intervention. Methods: We chart the metabolic response of lung epithelial cells to SARS-CoV-2 infection in primary cultures and COVID-19 patient samples and perform in vitro metabolism-focused drug screen on primary lung epithelial cells infected with different strains of the virus. We perform observational analysis of Israeli patients hospitalized due to COVID-19 and comparative epidemiological analysis from cohorts in Italy and the Veteran's Health Administration in the United States. In addition, we perform a prospective non-randomized interventional open-label study in which 15 patients hospitalized with severe COVID-19 were given 145 mg/day of nanocrystallized fenofibrate added to the standard of care. Results: SARS-CoV-2 infection produced transcriptional changes associated with increased glycolysis and lipid accumulation. Metabolism-focused drug screen showed that fenofibrate reversed lipid accumulation and blocked SARS-CoV-2 replication through a PPARα-dependent mechanism in both alpha and delta variants. Analysis of 3233 Israeli patients hospitalized due to COVID-19 supported in vitro findings. Patients taking fibrates showed significantly lower markers of immunoinflammation and faster recovery. Additional corroboration was received by comparative epidemiological analysis from cohorts in Europe and the United States. A subsequent prospective non-randomized interventional open-label study was carried out on 15 patients hospitalized with severe COVID-19. The patients were treated with 145 mg/day of nanocrystallized fenofibrate in addition to standard-of-care. Patients receiving fenofibrate demonstrated a rapid reduction in inflammation and a significantly faster recovery compared to patients admitted during the same period. Conclusions: Taken together, our data suggest that pharmacological modulation of PPARα should be strongly considered as a potential therapeutic approach for SARS-CoV-2 infection and emphasizes the need to complete the study of fenofibrate in large randomized controlled clinical trials. Funding: Funding was provided by European Research Council Consolidator Grants OCLD (project no. 681870) and generous gifts from the Nikoh Foundation and the Sam and Rina Frankel Foundation (YN). The interventional study was supported by Abbott (project FENOC0003). Clinical trial number: NCT04661930.


COVID-19 , Fenofibrate , Humans , Fenofibrate/therapeutic use , Lipids , PPAR alpha , Prospective Studies , SARS-CoV-2 , Treatment Outcome
4.
Lab Chip ; 22(23): 4469-4480, 2022 11 22.
Article En | MEDLINE | ID: mdl-36281785

Aminoglycosides are an important class of antibiotics that play a critical role in the treatment of life-threatening infections, but their use is limited by their toxicity. In fact, gentamicin causes severe nephrotoxicity in 17% of hospitalized patients. The kidney proximal tubule is particularly vulnerable to drug-induced nephrotoxicity due to its role in drug transport. In this work, we developed a perfused vascularized model of human kidney tubuloids integrated with tissue-embedded microsensors that track the metabolic dynamics of aminoglycoside-induced renal toxicity in real time. Our model shows that gentamicin disrupts proximal tubule polarity at concentrations 20-fold below its TC50, leading to a 3.2-fold increase in glucose uptake, and reverse TCA cycle flux culminating in a 40-fold increase in lipid accumulation. Blocking glucose reabsorption using the SGLT2 inhibitor empagliflozin significantly reduced gentamicin toxicity by 10-fold. These results demonstrate the utility of sensor-integrated kidney-on-chip platforms to rapidly identify new metabolic mechanisms that may underly adverse drug reactions. The results should improve our ability to modulate the toxicity of novel aminoglycosides.


Aminoglycosides , Anti-Bacterial Agents , Humans , Aminoglycosides/toxicity , Aminoglycosides/metabolism , Anti-Bacterial Agents/toxicity , Gentamicins/toxicity , Kidney/metabolism , Kidney Tubules, Proximal/metabolism
5.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article En | MEDLINE | ID: mdl-35135884

Mitochondrial inner NEET (MiNT) and the outer mitochondrial membrane (OMM) mitoNEET (mNT) proteins belong to the NEET protein family. This family plays a key role in mitochondrial labile iron and reactive oxygen species (ROS) homeostasis. NEET proteins contain labile [2Fe-2S] clusters which can be transferred to apo-acceptor proteins. In eukaryotes, the biogenesis of [2Fe-2S] clusters occurs within the mitochondria by the iron-sulfur cluster (ISC) system; the clusters are then transferred to [2Fe-2S] proteins within the mitochondria or exported to cytosolic proteins and the cytosolic iron-sulfur cluster assembly (CIA) system. The last step of export of the [2Fe-2S] is not yet fully characterized. Here we show that MiNT interacts with voltage-dependent anion channel 1 (VDAC1), a major OMM protein that connects the intermembrane space with the cytosol and participates in regulating the levels of different ions including mitochondrial labile iron (mLI). We further show that VDAC1 is mediating the interaction between MiNT and mNT, in which MiNT transfers its [2Fe-2S] clusters from inside the mitochondria to mNT that is facing the cytosol. This MiNT-VDAC1-mNT interaction is shown both experimentally and by computational calculations. Additionally, we show that modifying MiNT expression in breast cancer cells affects the dynamics of mitochondrial structure and morphology, mitochondrial function, and breast cancer tumor growth. Our findings reveal a pathway for the transfer of [2Fe-2S] clusters, which are assembled inside the mitochondria, to the cytosol.


Cytosol/metabolism , Ferrous Compounds/metabolism , Mitochondria/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Animals , Breast Neoplasms , Cell Line, Tumor , Computer Simulation , Extracellular Matrix , Female , Gene Expression Regulation, Neoplastic/physiology , Glycolysis , Humans , Hydrogen-Ion Concentration , Mice , Mice, Nude , Neoplasms, Experimental , Oxygen Consumption , Voltage-Dependent Anion Channel 1/genetics
6.
Elife ; 102021 10 25.
Article En | MEDLINE | ID: mdl-34694226

Severe acute respiratory syndrome (SARS)-CoV-2 infection leads to severe disease associated with cytokine storm, vascular dysfunction, coagulation, and progressive lung damage. It affects several vital organs, seemingly through a pathological effect on endothelial cells. The SARS-CoV-2 genome encodes 29 proteins, whose contribution to the disease manifestations, and especially endothelial complications, is unknown. We cloned and expressed 26 of these proteins in human cells and characterized the endothelial response to overexpression of each, individually. Whereas most proteins induced significant changes in endothelial permeability, nsp2, nsp5_c145a (catalytic dead mutant of nsp5), and nsp7 also reduced CD31, and increased von Willebrand factor expression and IL-6, suggesting endothelial dysfunction. Using propagation-based analysis of a protein-protein interaction (PPI) network, we predicted the endothelial proteins affected by the viral proteins that potentially mediate these effects. We further applied our PPI model to identify the role of each SARS-CoV-2 protein in other tissues affected by coronavirus disease (COVID-19). While validating the PPI network model, we found that the tight junction (TJ) proteins cadherin-5, ZO-1, and ß-catenin are affected by nsp2, nsp5_c145a, and nsp7 consistent with the model prediction. Overall, this work identifies the SARS-CoV-2 proteins that might be most detrimental in terms of endothelial dysfunction, thereby shedding light on vascular aspects of COVID-19.


Capillary Permeability , Endothelium, Vascular/metabolism , Host-Pathogen Interactions , SARS-CoV-2/metabolism , Viral Proteins/metabolism , Animals , COVID-19/virology , Human Umbilical Vein Endothelial Cells , Humans , Protein Interaction Maps , Tight Junction Proteins/metabolism
7.
Antioxidants (Basel) ; 10(8)2021 Jul 21.
Article En | MEDLINE | ID: mdl-34439408

Decreased insulin secretion, associated with pancreatic ß-cell failure, plays a critical role in many human diseases including diabetes, obesity, and cancer. While numerous studies linked ß-cell failure with enhanced levels of reactive oxygen species (ROS), the development of diabetes associated with hereditary conditions that result in iron overload, e.g., hemochromatosis, Friedreich's ataxia, and Wolfram syndrome type 2 (WFS-T2; a mutation in CISD2, encoding the [2Fe-2S] protein NAF-1), underscores an additional link between iron metabolism and ß-cell failure. Here, using NAF-1-repressed INS-1E pancreatic cells, we observed that NAF-1 repression inhibited insulin secretion, as well as impaired mitochondrial and ER structure and function. Importantly, we found that a combined treatment with the cell permeant iron chelator deferiprone and the glutathione precursor N-acetyl cysteine promoted the structural repair of mitochondria and ER, decreased mitochondrial labile iron and ROS levels, and restored glucose-stimulated insulin secretion. Additionally, treatment with the ferroptosis inhibitor ferrostatin-1 decreased cellular ROS formation and improved cellular growth of NAF-1 repressed pancreatic cells. Our findings reveal that suppressed expression of NAF-1 is associated with the development of ferroptosis-like features in pancreatic cells, and that reducing the levels of mitochondrial iron and ROS levels could be used as a therapeutic avenue for WFS-T2 patients.

8.
Annu Rev Biomed Eng ; 23: 203-224, 2021 07 13.
Article En | MEDLINE | ID: mdl-33788580

Circadian rhythms describe physiological systems that repeat themselves with a cycle of approximately 24 h. Our understanding of the cellular and molecular origins of these oscillations has improved dramatically, allowing us to appreciate the significant role these oscillations play in maintaining physiological homeostasis. Circadian rhythms allow living organisms to predict and efficiently respond to a dynamically changing environment, set by repetitive day/night cycles. Since circadian rhythms underlie almost every aspect of human physiology, it is unsurprising that they also influence the response of a living organism to disease, stress, and therapeutics. Therefore, not only do the mechanisms that maintain health and disrupt homeostasis depend on our internal circadian clock, but also the way drugs are perceived and function depends on these physiological rhythms. We present a holistic view of the therapeutic process, discussing components such as disease state, pharmacokinetics, and pharmacodynamics, as well as adverse reactions that are critically affected by circadian rhythms. We outline challenges and opportunities in moving toward personalized medicine approaches that explore and capitalize on circadian rhythms for the benefit of the patient.


Circadian Clocks , Pharmaceutical Preparations , Circadian Rhythm , Homeostasis , Humans
9.
Sci Transl Med ; 13(582)2021 02 24.
Article En | MEDLINE | ID: mdl-33627489

The kidney plays a critical role in fluid homeostasis, glucose control, and drug excretion. Loss of kidney function due to drug-induced nephrotoxicity affects over 20% of the adult population. The kidney proximal tubule is a complex vascularized structure that is particularly vulnerable to drug-induced nephrotoxicity. Here, we introduce a model of vascularized human kidney spheroids with integrated tissue-embedded microsensors for oxygen, glucose, lactate, and glutamine, providing real-time assessment of cellular metabolism. Our model shows that both the immunosuppressive drug cyclosporine and the anticancer drug cisplatin disrupt proximal tubule polarity at subtoxic concentrations, leading to glucose accumulation and lipotoxicity. Impeding glucose reabsorption using glucose transport inhibitors blocked cyclosporine and cisplatin toxicity by 1000- to 3-fold, respectively. Retrospective study of 247 patients who were diagnosed with kidney damage receiving cyclosporine or cisplatin in combination with the sodium-glucose cotransporter-2 (SGLT2) inhibitor empagliflozin showed significant (P < 0.001) improvement of kidney function, as well as reduction in creatinine and uric acid, markers of kidney damage. These results demonstrate the potential of sensor-integrated kidney-on-chip platforms to elucidate mechanisms of action and rapidly reformulate effective therapeutic solutions, increasing drug safety and reducing the cost of clinical and commercial failures.


Pharmaceutical Preparations , Sodium-Glucose Transporter 2 Inhibitors , Humans , Kidney , Lab-On-A-Chip Devices , Retrospective Studies , Sodium-Glucose Transporter 1
10.
J Am Chem Soc ; 142(51): 21460-21468, 2020 12 23.
Article En | MEDLINE | ID: mdl-33290051

Inspired by nature, where dynamic networks control the levels of gene expression and the activities of transcribed/translated proteins, we introduce nucleic acid-based constitutional dynamic networks (CDNs) as functional modules mimicking native circuits by demonstrating CDNs-guided programmed synthesis of genes, controlled transcription of RNAs, and dictated transcription/translation synthesis of proteins. An auxiliary CDN consisting of four dynamically equilibrated constituents AA', AB', BA', and BB' is orthogonally triggered by two different inputs yielding two different compositionally reconfigured CDNs. Subjecting the parent auxiliary CDN to two hairpins, HA and HB, and two templates TA and TB and a nicking/replication machinery leads to the cleavage of the hairpins and to the activation of the nicking/replication machineries that synthesize two "genes", e.g., the histidine-dependent DNAzyme g1 and the Zn2+-ion-dependent DNAzyme g2. The triggered orthogonal reconfiguration of the parent CDN to the respective CDNs leads to the programmed preferred CDN-guided synthesis of g1 or g2. Similarly, the triggered reconfigured CDNs are subjected to two hairpins HC and HD, the templates I'/I and J'/J, and the RNA polymerase (RNAp)/NTPs machinery. While the cleavage of the hairpins by the constituents associated with the parent CDN leads to the transcription of the broccoli aptamer recognizing the DFHBI ligand and of the aptamer recognizing the malachite green (MG) ligand, the orthogonally triggered CDNs lead to the CDNs-guided enhanced transcription of either the DFHBI aptamer or the MG aptamer. In addition, subjecting the triggered reconfigured CDNs to predesigned hairpins HE and HF, the templates M'/M and N'/N, the RNAp/NTPs machinery, and the cell-free ribosome t-RNA machinery leads to the CDNs-guided transcription/translation of the green fluorescence protein (GFP) or red fluorescence protein (RFP).


Gene Regulatory Networks , Protein Biosynthesis/genetics , Animals , Aptamers, Nucleotide/genetics , Green Fluorescent Proteins/genetics , RNA, Messenger/genetics
11.
Chem Sci ; 11(17): 4516-4524, 2020 Apr 14.
Article En | MEDLINE | ID: mdl-34122910

The enzymes glucose oxidase (GOx), acetylcholine esterase (AchE) and urease that drive biocatalytic transformations to alter pH, are integrated into pH-responsive DNA-based hydrogels. A two-enzyme-loaded hydrogel composed of GOx/urease or AchE/urease and a three-enzyme-loaded hydrogel composed of GOx/AchE/urease are presented. The biocatalytic transformations within the hydrogels lead to the dictated reconfiguration of nucleic acid bridges and the switchable control over the stiffness of the respective hydrogels. The switchable stiffness features are used to develop biocatalytically guided shape-memory and self-healing matrices. In addition, loading of GOx/insulin in a pH-responsive DNA-based hydrogel yields a glucose-triggered matrix for the controlled release of insulin, acting as an artificial pancreas. The release of insulin is controlled by the concentrations of glucose, hence, the biocatalytic insulin-loaded hydrogel provides an interesting sense-and-treat carrier for controlling diabetes.

12.
Annu Rev Biomed Eng ; 21: 219-239, 2019 06 04.
Article En | MEDLINE | ID: mdl-31167098

The liver is the central hub of xenobiotic metabolism and consequently the organ most prone to cosmetic- and drug-induced toxicity. Failure to detect liver toxicity or to assess compound clearance during product development is a major cause of postmarketing product withdrawal, with disastrous clinical and financial consequences. While small animals are still the preferred model in drug development, the recent ban on animal use in the European Union created a pressing need to develop precise and efficient tools to detect human liver toxicity during cosmetic development. This article includes a brief review of liver development, organization, and function and focuses on the state of the art of long-term cell culture, including hepatocyte cell sources, heterotypic cell-cell interactions, oxygen demands, and culture medium formulation. Finally, the article reviews emerging liver-on-chip devices and discusses the advantages and pitfalls of individual designs. The goal of this review is to provide a framework to design liver-on-chip devices and criteria with which to evaluate this emerging technology.


Cell Culture Techniques , Hepatocytes/pathology , Lab-On-A-Chip Devices/trends , Liver/metabolism , Liver/pathology , Tissue Engineering/trends , 3T3 Cells , Animals , Bioreactors , Culture Media/chemistry , Culture Media/pharmacology , Drug Design , Drug Discovery , Endothelial Cells/cytology , European Union , Hepatic Stellate Cells/cytology , Humans , Kupffer Cells/cytology , Mice , Microfluidics , Oxygen/chemistry , Tissue Distribution , Tissue Engineering/methods
13.
Sci Rep ; 8(1): 13739, 2018 09 13.
Article En | MEDLINE | ID: mdl-30214051

Microfluidic sorting offers a unique ability to isolate large numbers of cells for bulk proteomic or metabolomics studies but is currently limited by low throughput and persistent clogging at low flow rates. Recently we uncovered the physical principles governing the inertial focusing of particles in high-Reynolds numbers. Here, we superimpose high Reynolds inertial focusing on Dean vortices, to rapidly isolate large quantities of young and adult yeast from mixed populations at a rate of 107 cells/min/channel. Using a new algorithm to rapidly quantify budding scars in isolated yeast populations and system-wide proteomic analysis, we demonstrate that protein quality control and expression of established yeast aging markers such as CalM, RPL5, and SAM1 may change after the very first replication events, rather than later in the aging process as previously thought. Our technique enables the large-scale isolation of microorganisms based on minute differences in size (±1.5 µm), a feat unmatched by other technologies.


Lab-On-A-Chip Devices , Microfluidics/methods , Proteomics , Saccharomyces cerevisiae/growth & development , Equipment Design , Microfluidics/instrumentation
14.
Lab Chip ; 18(17): 2510-2522, 2018 08 21.
Article En | MEDLINE | ID: mdl-29992215

Drug development is currently hampered by the inability of animal experiments to accurately predict human response. While emerging organ on chip technology offers to reduce risk using microfluidic models of human tissues, the technology still mostly relies on end-point assays and biomarker measurements to assess tissue damage resulting in limited mechanistic information and difficulties to detect adverse effects occurring below the threshold of cellular damage. Here we present a sensor-integrated liver on chip array in which oxygen is monitored using two-frequency phase modulation of tissue-embedded microprobes, while glucose, lactate and temperature are measured in real time using microfluidic electrochemical sensors. Our microphysiological platform permits the calculation of dynamic changes in metabolic fluxes around central carbon metabolism, producing a unique metabolic fingerprint of the liver's response to stimuli. Using our platform, we studied the dynamics of human liver response to the epilepsy drug Valproate (Depakine™) and the antiretroviral medication Stavudine (Zerit™). Using E6/E7LOW hepatocytes, we show TC50 of 2.5 and 0.8 mM, respectively, coupled with a significant induction of steatosis in 2D and 3D cultures. Time to onset analysis showed slow progressive damage starting only 15-20 hours post-exposure. However, flux analysis showed a rapid disruption of metabolic homeostasis occurring below the threshold of cellular damage. While Valproate exposure led to a sustained 15% increase in lipogenesis followed by mitochondrial stress, Stavudine exposure showed only a transient increase in lipogenesis suggesting disruption of ß-oxidation. Our data demonstrates the importance of tracking metabolic stress as a predictor of clinical outcome.


Lab-On-A-Chip Devices , Metabolic Flux Analysis/instrumentation , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/metabolism , Cell Line , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Stavudine/adverse effects , Valproic Acid/adverse effects
15.
Elife ; 72018 06 05.
Article En | MEDLINE | ID: mdl-29869985

Cellular redox status affects diverse cellular functions, including proliferation, protein homeostasis, and aging. Thus, individual differences in redox status can give rise to distinct sub-populations even among cells with identical genetic backgrounds. Here, we have created a novel methodology to track redox status at single cell resolution using the redox-sensitive probe Grx1-roGFP2. Our method allows identification and sorting of sub-populations with different oxidation levels in either the cytosol, mitochondria or peroxisomes. Using this approach, we defined a redox-dependent heterogeneity of yeast cells and characterized growth, as well as proteomic and transcriptomic profiles of distinctive redox subpopulations. We report that, starting in late logarithmic growth, cells of the same age have a bi-modal distribution of oxidation status. A comparative proteomic analysis between these populations identified three key proteins, Hsp30, Dhh1, and Pnc1, which affect basal oxidation levels and may serve as first line of defense proteins in redox homeostasis.


Proteome/analysis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Single-Cell Analysis/methods , Transcriptome , Cytosol/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeostasis , Mitochondria/metabolism , Oxidation-Reduction , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics
16.
N Biotechnol ; 45: 113-122, 2018 Oct 25.
Article En | MEDLINE | ID: mdl-29438748

The hepatitis C virus (HCV) non-structural protein 3 (NS3) is essential for HCV maturation. The NS3/4A protease is a target for several HCV treatments and is a well-known target for HCV drug discovery. The protein is membrane associated and thus probably interacts with other membrane proteins. However, the vast majority of known NS3 host partners are soluble proteins rather than membrane proteins, most likely due to lack of appropriate platforms for their discovery. Utilization of an integrated microfluidics platform enables analysis of membrane proteins in their native form. We screened over 2800 membrane proteins for interaction with NS3 and 90 previously unknown interactions were identified. Of these, several proteins were selected for validation by co-immunoprecipitation and for NS3 proteolytic activity. Bearing in mind the considerable number of interactions formed, together with the popularity of NS3/4A protease as a drug target, it was striking to note its lack of proteolytic activity. Only a single protein, Neuregulin1, was observed to be cleaved, adding to the 3 known NS3/4A cleavage targets. Neuregulin1 participates in neural proliferation. Recent studies have shown its involvement in HCV infection and hepatocellular carcinoma. We showed that NS3/4A triggers an increase in neuregulin1 mRNA levels in HCV infected cells. Despite this increase, its protein concentration is decreased due to proteolytic cleavage. Additionally, its EGF-like domain levels were increased, possibly explaining the ErbB2 and EGFR upregulation in HCV infected cells. The newly discovered protein interactions may provide insights into HCV infection mechanisms and potentially provide new therapeutic targets against HCV.


Membrane Proteins/chemistry , Microfluidic Analytical Techniques , Neuregulin-1/metabolism , Oligonucleotide Array Sequence Analysis , Peptide Hydrolases/metabolism , Viral Nonstructural Proteins/metabolism , Cell Line , Humans , Membrane Proteins/metabolism , Neuregulin-1/genetics , Peptide Library
18.
Methods Mol Biol ; 1713: 241-254, 2018.
Article En | MEDLINE | ID: mdl-29218530

The facilitative glucose transporter (GLUT) family plays a key role in metabolic homeostasis, controlling the absorption rates and rapid response to changing carbohydrate levels. The facilitative GLUT2 transporter is uniquely expressed in metabolic epithelial cells of the intestine, pancreas, liver, and kidney. GLUT2 dysfunction is associated with several pathologies, including Fanconi-Bickel syndrome, a glycogen storage disease, characterized by growth retardation and renal dysfunction. Interestingly, GLUT2 activity is modulated by its cellular localization. Membrane translocation specifically regulates GLUT2 activity in enterocytes, pancreatic ß-cells, hepatocytes, and proximal tubule cells. We have established a system to visualize and quantify GLUT2 translocation, and its dynamics, by live imaging of a mCherry-hGLUT2 fusion protein in polarized epithelial cells. This system enables testing of putative modulators of GLUT2 translocation, which are potential drugs for conditions of impaired glucose homeostasis and associated nephropathy.


Glucose Transporter Type 2/metabolism , Molecular Imaging , Animals , Dogs , Epithelial Cells/metabolism , Glucose/metabolism , Humans , Kidney/metabolism , Madin Darby Canine Kidney Cells , Molecular Imaging/methods , Protein Transport
19.
J Am Soc Nephrol ; 29(2): 434-448, 2018 02.
Article En | MEDLINE | ID: mdl-29030466

Altered glucose reabsorption via the facilitative glucose transporter 2 (GLUT2) during diabetes may lead to renal proximal tubule cell (RPTC) injury, inflammation, and interstitial fibrosis. These pathologies are also triggered by activating the cannabinoid-1 receptor (CB1R), which contributes to the development of diabetic nephropathy (DN). However, the link between CB1R and GLUT2 remains to be determined. Here, we show that chronic peripheral CB1R blockade or genetically inactivating CB1Rs in the RPTCs ameliorated diabetes-induced renal structural and functional changes, kidney inflammation, and tubulointerstitial fibrosis in mice. Inhibition of CB1R also downregulated GLUT2 expression, affected the dynamic translocation of GLUT2 to the brush border membrane of RPTCs, and reduced glucose reabsorption. Thus, targeting peripheral CB1R or inhibiting GLUT2 dynamics in RPTCs has the potential to treat and ameliorate DN. These findings may support the rationale for the clinical testing of peripherally restricted CB1R antagonists or the development of novel renal-specific GLUT2 inhibitors against DN.


Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism , Kidney Tubules, Proximal/pathology , Receptor, Cannabinoid, CB1/metabolism , Albuminuria/urine , Animals , Biological Transport , Blood Glucose/metabolism , Blood Urea Nitrogen , Creatinine/urine , Diabetic Nephropathies/chemically induced , Dogs , Fibrosis , Glucose/metabolism , Glucose Transporter Type 2/antagonists & inhibitors , Insulin/blood , Islets of Langerhans/pathology , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Knockout , Protein Kinase C beta/metabolism , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/genetics , Streptozocin , Sulfonamides/pharmacology
20.
Methods ; 127: 30-36, 2017 08 15.
Article En | MEDLINE | ID: mdl-28526563

Lipid droplets (LDs) are regulated neutral lipid storage organelles having a central role in numerous cellular processes as well as in various pathologies such as metabolic disorders, immune responses and during pathogen infection. Due to the growing significance of LDs, extensive efforts are made to study the mechanism and the dynamics of their formation and life history and how are these diverted or modified by pathogens. Real-time visualization of lipid droplet biogenesis can assist in clarifying these and other important issues and may have implications towards understanding the pathogenesis of the associated diseases. Typically, LDs are post-experimentally stained using lipophilic dyes and are visualized under a microscope. Alternatively, overexpression of LD-associated proteins or immunofluorescence analyses are used to identify and follow LDs. These experimental approaches only examine a single end point of the experiment and cannot answer questions regarding LD dynamics. Here, we describe a simple and novel experimental setting that allows real-time fluorescence staining and detection of LDs in cultured living as well as infected cells. This method is quick and simple and is not restricted to a specific dye or cell line. Using this system, the biogenesis of LDs and their growth is demonstrated in cells infected with hepatitis C virus (HCV), confirming the strength of this method and the wide range of its applications.


Hepatitis C/metabolism , Lipid Droplets/metabolism , Virology/methods , Animals , Cell Line , Chlorocebus aethiops/metabolism , Chlorocebus aethiops/virology , Fluorescent Antibody Technique/methods , Host-Pathogen Interactions , Humans , Microbiological Techniques/methods
...