Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Coll Nutr ; 38(7): 577-585, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30971174

RESUMEN

Background: Enzymes are crucial for all aspects of metabolic function. Digestive enzymes from natural sources have been credited with beneficial effects in the digestion and absorption of food. N-SORB is a novel KD120 multienzyme complex (MEC) of metabolically activated enzymes composed of proteases, amylases, lipases, alpha-galactosidase, and glucoamylase from natural sources. These enzymes are encapsulated in a SK713 SLP (non-GMO soy lecithin phospholipid) absorption technology (Prodosome®). Objective: This randomized, double-blind placebo-controlled investigation assessed the safety and efficacy of N-SORB KD120 MEC in healthy male and female volunteers on various parameters of the blood, immunity, body composition, physical health, and quality of life following a 90-day intervention. Methods: Forty-six male and female (mean age: 25.8 ± 12.1 years) healthy volunteers were randomly assigned to receive either N-SORB (1 mL, twice daily) or placebo for 90 consecutive days. Complete blood count, as well as blood glucose, liver enzymes, and lipid profile were assessed pre- and post-intervention. Serum cytokine levels were determined by using a Bio-Plex Pro Human Cytokine 8-plex assay and enzyme linked immunosorbent assay (ELISA). Whole body composition analysis was performed by dual-energy x-ray absorptiometry (DEXA) to determine body fat mass, lean mass, and android and gynoid fat. Body weight, blood pressure, and physical health were assessed. Changes in quality of life were examined using the World Health Organization Quality of Life-abbreviated version and sleep quality was assessed using the 24-item Pittsburgh Sleep Quality Index (PSQI) questionnaire. Adverse events were monitored before, during, and after completion of the study. Results: Of the 46 subjects enrolled, a total of 40 subjects successfully completed the study. Compared to placebo, changes in blood cell counts including hematocrit, hemoglobin, mean corpuscular volume, platelets, and lymphocytes provide evidence of some improvement. Quality of life (QOL) parameters showed a small but significant improvement in the N-SORB group. A significant increase was observed in aspartate aminotransferase level in the placebo group at the end of 90 days of treatment; however, no increase was observed in the N-SORB group. No significant changes in blood urea nitrogen, serum creatinine, alkaline phosphatase, alanine aminotransferase, and lipid profile were observed between the placebo and treatment groups before and following intervention. No adverse effects were reported. Conclusions: This randomized, double blind, placebo-controlled clinical study demonstrates that short-term intervention with N-SORB improves the QOL and PSQI in healthy volunteers and did not significantly alter cardiometabolic parameters, lipid profile, or body composition.


Asunto(s)
Complejos Multienzimáticos/farmacología , Sueño/efectos de los fármacos , Adolescente , Adulto , Aspartato Aminotransferasas/sangre , Aspartato Aminotransferasas/metabolismo , Método Doble Ciego , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Complejos Multienzimáticos/administración & dosificación , Calidad de Vida , Adulto Joven
2.
Front Cell Neurosci ; 8: 372, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25414642

RESUMEN

Brain derived neurotrophic factor (BDNF) plays key roles in several neurodevelopmental disorders and actions of pharmacological treatments. However, it is unclear how specific BDNF's effects are on different circuit components. Current studies have largely focused on the role of BDNF in modification of synaptic development. The precise roles of BDNF in the refinement of a functional circuit in vivo remain unclear. Val66Met polymorphism of BDNF may be associated with increased risk for cognitive impairments and is mediated at least in part by activity-dependent trafficking and/or secretion of BDNF. Using mutant mice that lacked activity-driven BDNF expression (bdnf-KIV), we previously reported that experience regulation of the cortical GABAergic network is mediated by activity-driven BDNF expression. Here, we demonstrate that activity-driven BDNF's effects on circuits formed by the layer IV spiny stellate cells are highly specific. Structurally, dendritic but not axonal morphology was altered in the mutant. Physiologically, GABAergic but not glutamatergic synapses were severely affected. The effects on GABA transmission occurs via presynaptic alteration of calcium-dependent release probability. These results suggest that neuronal activity through activity-driven BDNF expression, can selectively regulate specific features of layer IV circuits in vivo. We postulate that the role of activity-dependent BDNF is to modulate the computational ability of circuits that relate to the gain control (i.e., feed-forward inhibition); whereas the basic wiring of circuits relevant to the sensory pathway is spared. Gain control modulation within cortical circuits has broad impact on cognitive processing and brain state-transitions. Cognitive behavior and mode is determined by brain states, thus the studying of circuit alteration by endogenous BDNF provides insights into the cellular and molecular mechanisms of diseases mediated by BDNF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA