Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Cancer Res ; 82(13): 2378-2387, 2022 07 05.
Article En | MEDLINE | ID: mdl-35536872

Identifying biomarkers predictive of cancer cell response to drug treatment constitutes one of the main challenges in precision oncology. Recent large-scale cancer pharmacogenomic studies have opened new avenues of research to develop predictive biomarkers by profiling thousands of human cancer cell lines at the molecular level and screening them with hundreds of approved drugs and experimental chemical compounds. Many studies have leveraged these data to build predictive models of response using various statistical and machine learning methods. However, a common pitfall to these methods is the lack of interpretability as to how they make predictions, hindering the clinical translation of these models. To alleviate this issue, we used the recent logic modeling approach to develop a new machine learning pipeline that explores the space of bimodally expressed genes in multiple large in vitro pharmacogenomic studies and builds multivariate, nonlinear, yet interpretable logic-based models predictive of drug response. The performance of this approach was showcased in a compendium of the three largest in vitro pharmacogenomic datasets to build robust and interpretable models for 101 drugs that span 17 drug classes with high validation rates in independent datasets. These results along with in vivo and clinical validation support a better translation of gene expression biomarkers between model systems using bimodal gene expression. SIGNIFICANCE: A new machine learning pipeline exploits the bimodality of gene expression to provide a reliable set of candidate predictive biomarkers with a high potential for clinical translatability.


Neoplasms , Biomarkers , Gene Expression , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Pharmacogenetics , Precision Medicine
2.
Nucleic Acids Res ; 50(D1): D1348-D1357, 2022 01 07.
Article En | MEDLINE | ID: mdl-34850112

Cancer pharmacogenomics studies provide valuable insights into disease progression and associations between genomic features and drug response. PharmacoDB integrates multiple cancer pharmacogenomics datasets profiling approved and investigational drugs across cell lines from diverse tissue types. The web-application enables users to efficiently navigate across datasets, view and compare drug dose-response data for a specific drug-cell line pair. In the new version of PharmacoDB (version 2.0, https://pharmacodb.ca/), we present (i) new datasets such as NCI-60, the Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) dataset, as well as updated data from the Genomics of Drug Sensitivity in Cancer (GDSC) and the Genentech Cell Line Screening Initiative (gCSI); (ii) implementation of FAIR data pipelines using ORCESTRA and PharmacoDI; (iii) enhancements to drug-response analysis such as tissue distribution of dose-response metrics and biomarker analysis; and (iv) improved connectivity to drug and cell line databases in the community. The web interface has been rewritten using a modern technology stack to ensure scalability and standardization to accommodate growing pharmacogenomics datasets. PharmacoDB 2.0 is a valuable tool for mining pharmacogenomics datasets, comparing and assessing drug-response phenotypes of cancer models.


Databases, Genetic , Pharmacogenetics/standards , Pharmacogenomic Testing/methods , Software , Genomics/methods , Humans
3.
Nat Commun ; 12(1): 5797, 2021 10 04.
Article En | MEDLINE | ID: mdl-34608132

Reproducibility is essential to open science, as there is limited relevance for findings that can not be reproduced by independent research groups, regardless of its validity. It is therefore crucial for scientists to describe their experiments in sufficient detail so they can be reproduced, scrutinized, challenged, and built upon. However, the intrinsic complexity and continuous growth of biomedical data makes it increasingly difficult to process, analyze, and share with the community in a FAIR (findable, accessible, interoperable, and reusable) manner. To overcome these issues, we created a cloud-based platform called ORCESTRA ( orcestra.ca ), which provides a flexible framework for the reproducible processing of multimodal biomedical data. It enables processing of clinical, genomic and perturbation profiles of cancer samples through automated processing pipelines that are user-customizable. ORCESTRA creates integrated and fully documented data objects with persistent identifiers (DOI) and manages multiple dataset versions, which can be shared for future studies.

4.
Brief Bioinform ; 22(6)2021 11 05.
Article En | MEDLINE | ID: mdl-34382071

The goal of precision oncology is to tailor treatment for patients individually using the genomic profile of their tumors. Pharmacogenomics datasets such as cancer cell lines are among the most valuable resources for drug sensitivity prediction, a crucial task of precision oncology. Machine learning methods have been employed to predict drug sensitivity based on the multiple omics data available for large panels of cancer cell lines. However, there are no comprehensive guidelines on how to properly train and validate such machine learning models for drug sensitivity prediction. In this paper, we introduce a set of guidelines for different aspects of training gene expression-based predictors using cell line datasets. These guidelines provide extensive analysis of the generalization of drug sensitivity predictors and challenge many current practices in the community including the choice of training dataset and measure of drug sensitivity. The application of these guidelines in future studies will enable the development of more robust preclinical biomarkers.


Drug Resistance, Neoplasm , Machine Learning , Pharmacogenetics , Algorithms , Cell Line, Tumor , Datasets as Topic , Humans
5.
Nat Commun ; 12(1): 1054, 2021 02 16.
Article En | MEDLINE | ID: mdl-33594052

In acute myeloid leukemia (AML), molecular heterogeneity across patients constitutes a major challenge for prognosis and therapy. AML with NPM1 mutation is a distinct genetic entity in the revised World Health Organization classification. However, differing patterns of co-mutation and response to therapy within this group necessitate further stratification. Here we report two distinct subtypes within NPM1 mutated AML patients, which we label as primitive and committed based on the respective presence or absence of a stem cell signature. Using gene expression (RNA-seq), epigenomic (ATAC-seq) and immunophenotyping (CyToF) analysis, we associate each subtype with specific molecular characteristics, disease differentiation state and patient survival. Using ex vivo drug sensitivity profiling, we show a differential drug response of the subtypes to specific kinase inhibitors, irrespective of the FLT3-ITD status. Differential drug responses of the primitive and committed subtype are validated in an independent AML cohort. Our results highlight heterogeneity among NPM1 mutated AML patient samples based on stemness and suggest that the addition of kinase inhibitors to the treatment of cases with the primitive signature, lacking FLT3-ITD, could have therapeutic benefit.


Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Nuclear Proteins/genetics , Chromatin/metabolism , Cluster Analysis , Gene Expression Regulation, Leukemic/drug effects , Humans , Immunophenotyping , Nucleophosmin , Phenotype , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Reproducibility of Results , Survival Analysis
6.
Nucleic Acids Res ; 48(W1): W455-W462, 2020 07 02.
Article En | MEDLINE | ID: mdl-32421831

In the past few decades, major initiatives have been launched around the world to address chemical safety testing. These efforts aim to innovate and improve the efficacy of existing methods with the long-term goal of developing new risk assessment paradigms. The transcriptomic and toxicological profiling of mammalian cells has resulted in the creation of multiple toxicogenomic datasets and corresponding tools for analysis. To enable easy access and analysis of these valuable toxicogenomic data, we have developed ToxicoDB (toxicodb.ca), a free and open cloud-based platform integrating data from large in vitro toxicogenomic studies, including gene expression profiles of primary human and rat hepatocytes treated with 231 potential toxicants. To efficiently mine these complex toxicogenomic data, ToxicoDB provides users with harmonized chemical annotations, time- and dose-dependent plots of compounds across datasets, as well as the toxicity-related pathway analysis. The data in ToxicoDB have been generated using our open-source R package, ToxicoGx (github.com/bhklab/ToxicoGx). Altogether, ToxicoDB provides a streamlined process for mining highly organized, curated, and accessible toxicogenomic data that can be ultimately applied to preclinical toxicity studies and further our understanding of adverse outcomes.


Databases, Genetic , Software , Toxicogenetics/methods , Acetaminophen/toxicity , Animals , Computer Graphics , DNA/biosynthesis , Data Mining , Gene Expression/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Nucleic Acid Synthesis Inhibitors/toxicity , Rats
...