Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
PLoS Pathog ; 20(4): e1012154, 2024 Apr.
Article En | MEDLINE | ID: mdl-38603707

Candida albicans chronically colonizes the respiratory tract of patients with Cystic Fibrosis (CF). It competes with CF-associated pathogens (e.g. Pseudomonas aeruginosa) and contributes to disease severity. We hypothesize that C. albicans undergoes specific adaptation mechanisms that explain its persistence in the CF lung environment. To identify the underlying genetic and phenotypic determinants, we serially recovered 146 C. albicans clinical isolates over a period of 30 months from the sputum of 25 antifungal-naive CF patients. Multilocus sequence typing analyses revealed that most patients were individually colonized with genetically close strains, facilitating comparative analyses between serial isolates. We strikingly observed differential ability to filament and form monospecies and dual-species biofilms with P. aeruginosa among 18 serial isolates sharing the same diploid sequence type, recovered within one year from a pediatric patient. Whole genome sequencing revealed that their genomes were highly heterozygous and similar to each other, displaying a highly clonal subpopulation structure. Data mining identified 34 non-synonymous heterozygous SNPs in 19 open reading frames differentiating the hyperfilamentous and strong biofilm-former strains from the remaining isolates. Among these, we detected a glycine-to-glutamate substitution at position 299 (G299E) in the deduced amino acid sequence of the zinc cluster transcription factor ROB1 (ROB1G299E), encoding a major regulator of filamentous growth and biofilm formation. Introduction of the G299E heterozygous mutation in a co-isolated weak biofilm-former CF strain was sufficient to confer hyperfilamentous growth, increased expression of hyphal-specific genes, increased monospecies biofilm formation and increased survival in dual-species biofilms formed with P. aeruginosa, indicating that ROB1G299E is a gain-of-function mutation. Disruption of ROB1 in a hyperfilamentous isolate carrying the ROB1G299E allele abolished hyperfilamentation and biofilm formation. Our study links a single heterozygous mutation to the ability of C. albicans to better survive during the interaction with other CF-associated microbes and illuminates how adaptive traits emerge in microbial pathogens to persistently colonize and/or infect the CF-patient airways.


Biofilms , Candida albicans , Cystic Fibrosis , Fungal Proteins , Transcription Factors , Cystic Fibrosis/microbiology , Candida albicans/genetics , Candida albicans/metabolism , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Biofilms/growth & development , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gain of Function Mutation , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Lung/microbiology , Candidiasis/microbiology , Adaptation, Physiological
2.
Transl Oncol ; 44: 101940, 2024 Jun.
Article En | MEDLINE | ID: mdl-38537326

Precision Medicine is being increasingly used in the developed world to improve health care. While several Precision Medicine (PM) initiatives have been launched worldwide, their implementations have proven to be more challenging particularly in low- and middle-income countries. To address this issue, the "Personalized Medicine in North Africa" initiative (PerMediNA) was launched in three North African countries namely Tunisia, Algeria and Morocco. PerMediNA is coordinated by Institut Pasteur de Tunis together with the French Ministry for Europe and Foreign Affairs, with the support of Institut Pasteur in France. The project is carried out along with Institut Pasteur d'Algérie and Institut Pasteur du Maroc in collaboration with national and international leading institutions in the field of PM including Institut Gustave Roussy in Paris. PerMediNA aims to assess the readiness level of PM implementation in North Africa, to strengthen PM infrastructure, to provide workforce training, to generate genomic data on North African populations, to implement cost effective, affordable and sustainable genetic testing for cancer patients and to inform policy makers on how to translate research knowledge into health products and services. Gender equity and involvement of young scientists in this implementation process are other key goals of the PerMediNA project. In this paper, we are describing PerMediNA as the first PM implementation initiative in North Africa. Such initiatives contribute significantly in shortening existing health disparities and inequities between developed and developing countries and accelerate access to innovative treatments for global health.

3.
Gut Microbes ; 16(1): 2320291, 2024.
Article En | MEDLINE | ID: mdl-38417029

Intratumoral bacteria flexibly contribute to cellular and molecular tumor heterogeneity for supporting cancer recurrence through poorly understood mechanisms. Using spatial metabolomic profiling technologies and 16SrRNA sequencing, we herein report that right-sided colorectal tumors are predominantly populated with Colibactin-producing Escherichia coli (CoPEC) that are locally establishing a high-glycerophospholipid microenvironment with lowered immunogenicity. It coincided with a reduced infiltration of CD8+ T lymphocytes that produce the cytotoxic cytokines IFN-γ where invading bacteria have been geolocated. Mechanistically, the accumulation of lipid droplets in infected cancer cells relied on the production of colibactin as a measure to limit genotoxic stress to some extent. Such heightened phosphatidylcholine remodeling by the enzyme of the Land's cycle supplied CoPEC-infected cancer cells with sufficient energy for sustaining cell survival in response to chemotherapies. This accords with the lowered overall survival of colorectal patients at stage III-IV who were colonized by CoPEC when compared to patients at stage I-II. Accordingly, the sensitivity of CoPEC-infected cancer cells to chemotherapies was restored upon treatment with an acyl-CoA synthetase inhibitor. By contrast, such metabolic dysregulation leading to chemoresistance was not observed in human colon cancer cells that were infected with the mutant strain that did not produce colibactin (11G5∆ClbQ). This work revealed that CoPEC locally supports an energy trade-off lipid overload within tumors for lowering tumor immunogenicity. This may pave the way for improving chemoresistance and subsequently outcome of CRC patients who are colonized by CoPEC.


Colorectal Neoplasms , Gastrointestinal Microbiome , Peptides , Polyketides , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Tumor Microenvironment , Drug Resistance, Neoplasm , Mutagens/metabolism , Neoplasm Recurrence, Local , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Polyketides/metabolism , Lipids
4.
J Biomol Tech ; 32(2): 50-56, 2021 07.
Article En | MEDLINE | ID: mdl-34140839

In 2020, research entities at the Institut Pasteur (IP) in Paris, as elsewhere around the world, were closed because of the coronavirus disease 2019 (COVID-19) pandemic. However, IP core facilities, laboratories, services, and departments working on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and priority projects were authorized to continue working both on site and remotely. Given the importance of its role in SARS-CoV-2 genome-sequencing initiatives, the IP Biomics core facility was fully functional during the first (i.e., March-June 2020) and second (i.e., November-December 2020) national lockdowns. We describe here how Biomics successfully implemented an emergency management plan to deal with this health crisis. We highlight the internal deployment of the institutional business continuity plan (BCP) through a series of actions. We also address the impact of the COVID-19 crisis on Biomics staff and collaborators. The added value of quality management and the limitations of risk management systems are discussed. Finally, we suggest that the Biomics infrastructure and the BCP described here could be used for benchmarking purposes, for other next-generation sequencing core facilities wishing to implement/improve their processes, and for future major crisis management.


COVID-19/epidemiology , Pandemics , SARS-CoV-2/genetics , COVID-19/pathology , COVID-19/virology , Communicable Disease Control/standards , High-Throughput Nucleotide Sequencing , Humans , Laboratories , Paris/epidemiology
...