Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes ; 68(10): 1990-2003, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31371518

RESUMEN

Tumors induce tolerance toward their antigens by producing the chemokine CCL21, leading to the formation of tertiary lymphoid organs (TLOs). Ins2-CCL21 transgenic, nonobese diabetic (NOD) mice express CCL21 in pancreatic ß-cells and do not develop autoimmune diabetes. We investigated by which mechanisms CCL21 expression prevented diabetes. Ins2-CCL21 mice develop TLOs by 4 weeks of age, consisting of naive CD4+ T cells compartmentalized within networks of CD45-gp38+CD31- fibroblastic reticular cell (FRC)-like cells. Importantly, 12-week-old Ins2-CCL21 TLOs contained FRC-like cells with higher contractility, regulatory, and anti-inflammatory properties and enhanced expression of ß-cell autoantigens compared with nontransgenic NOD TLOs found in inflamed islets. Consistently, transgenic mice harbored fewer autoreactive T cells and a higher proportion of regulatory T cells in the islets. Using adoptive transfer and islet transplantation models, we demonstrate that TLO formation in Ins2-CCL21 transgenic islets is critical for the regulation of autoimmunity, and although the effect is systemic, the induction is mediated locally likely by lymphocyte trafficking through TLOs. Overall, our findings suggest that CCL21 promotes TLOs that differ from inflammatory TLOs found in type 1 diabetic islets in that they resemble lymph nodes, contain FRC-like cells expressing ß-cell autoantigens, and are able to induce systemic and antigen-specific tolerance leading to diabetes prevention.


Asunto(s)
Quimiocina CCL21/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Páncreas/metabolismo , Células del Estroma/metabolismo , Animales , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos
2.
Cureus ; 9(4): e1181, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28533997

RESUMEN

In light of recent warnings by the United States (US) Surgeon General and Centers for Disease Control (CDC) guidelines for recommending more prudent use of opioid narcotics, the search for a non-opioid alternative for aborting acute migraines is particularly relevant. The CDC also estimates the prevalence of opioid dependence may be as high as 26% among patients prescribed opioids for chronic pain, not due to cancer, in the primary care setting. Given such staggering data, it is imperative that we, as caretakers, not foster opioid dependence but rather continue to investigate non-opioid therapies for the management of acute migraines in the emergent care settings. Our literature review demonstrates that metoclopramide should be used more frequently as first-line therapy for an acute migraine over opioids. The use of opioids specifically has been discouraged as migraine treatment by the American Headache Society citing "insufficient evidence" as the main reason. Metoclopramide, specifically using the 10 mg dose, has been cited as "highly likely to be effective" by the same guidelines. Another major issue with opioids is the growing potential for abuse, thus minimizing the use of these drugs for only special circumstances would be beneficial overall.

3.
Transplantation ; 101(5): 1025-1035, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27525644

RESUMEN

BACKGROUND: Understanding the effects of capsule composition and transplantation site on graft outcomes of encapsulated islets will aid in the development of more effective strategies for islet transplantation without immunosuppression. METHODS: Here, we evaluated the effects of transplanting alginate (ALG)-based microcapsules (Micro) in the confined and well-vascularized epididymal fat pad (EFP) site, a model of the human omentum, as opposed to free-floating in the intraperitoneal cavity (IP) in mice. We also examined the effects of reinforcing ALG with polyethylene glycol (PEG). To allow transplantation in the EFP site, we minimized capsule size to 500 ± 17 µm. Unlike ALG, PEG resists osmotic stress, hence we generated hybrid microcapsules by mixing PEG and ALG (MicroMix) or by coating ALG capsules with a 15 ± 2 µm PEG layer (Double). RESULTS: We found improved engraftment of fully allogeneic BALB/c islets in Micro capsules transplanted in the EFP (median reversal time [MRT], 1 day) versus the IP site (MRT, 5 days; P < 0.01) in diabetic C57BL/6 mice and of Micro encapsulated (MRT, 8 days) versus naked (MRT, 36 days; P < 0.01) baboon islets transplanted in the EFP site. Although in vitro viability and functionality of islets within MicroMix and Double capsules were comparable to Micro, addition of PEG to ALG in MicroMix capsules improved engraftment of allogeneic islets in the IP site, but resulted deleterious in the EFP site, probably due to lower biocompatibility. CONCLUSIONS: Our results suggest that capsule composition and transplant site affect graft outcomes through their effects on nutrient availability, capsule stability, and biocompatibility.


Asunto(s)
Alginatos/administración & dosificación , Trasplante de Islotes Pancreáticos/métodos , Polietilenglicoles/administración & dosificación , Animales , Cápsulas , Epidídimo , Ácido Glucurónico/administración & dosificación , Ácidos Hexurónicos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Epiplón , Evaluación de Resultado en la Atención de Salud
4.
Biotechnol Bioeng ; 112(9): 1916-26, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25786390

RESUMEN

With a view toward reduction of graft loss, we explored pancreatic islet transplantation within fibrin matrices rendered pro-angiogenic by incorporation of minimal doses of vascular endothelial growth factor-A165 and platelet-derived growth factor-BB presented complexed to a fibrin-bound integrin-binding fibronectin domain. Engineered matrices allowed for extended release of pro-angiogenic factors and for their synergistic signaling with extracellular matrix-binding domains in the post-transplant period. Aprotinin addition delayed matrix degradation and prolonged pro-angiogenic factor availability within the graft. Both subcutaneous (SC) and epididymal fat pad (EFP) sites were evaluated. We show that in the SC site, diabetes reversal in mice transplanted with 1,000 IEQ of syngeneic islets was not observed for islets transplanted alone, while engineered matrices resulted in a diabetes median reversal time (MDRT) of 38 days. In the EFP site, the MDRT with 250 IEQ of syngeneic islets within the engineered matrices was 24 days versus 86 days for islets transplanted alone. Improved function of engineered grafts was associated with enhanced and earlier (by day 7) angiogenesis. Our findings show that by engineering the transplant site to promote prompt re-vascularization, engraftment and long-term function of islet grafts can be improved in relevant extrahepatic sites.


Asunto(s)
Fibrina/química , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Becaplermina , Proliferación Celular/efectos de los fármacos , Humanos , Hidrogeles/química , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-sis/química , Proteínas Proto-Oncogénicas c-sis/deficiencia , Proteínas Proto-Oncogénicas c-sis/farmacología , Factor A de Crecimiento Endotelial Vascular/química
5.
Proc Natl Acad Sci U S A ; 111(29): 10514-9, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24982192

RESUMEN

Encapsulation of islets of Langerhans may represent a way to transplant islets in the absence of immunosuppression. Traditional methods for encapsulation lead to diffusional limitations imposed by the size of the capsules (600-1,000 µm in diameter), which results in core hypoxia and delayed insulin secretion in response to glucose. Moreover, the large volume of encapsulated cells does not allow implantation in sites that might be more favorable to islet cell engraftment. To address these issues, we have developed an encapsulation method that allows conformal coating of islets through microfluidics and minimizes capsule size and graft volume. In this method, capsule thickness, rather than capsule diameter, is constant and tightly defined by the microdevice geometry and the rheological properties of the immiscible fluids used for encapsulation within the microfluidic system. We have optimized the method both computationally and experimentally, and found that conformal coating allows for complete encapsulation of islets with a thin (a few tens of micrometers) continuous layer of hydrogel. Both in vitro and in vivo in syngeneic murine models of islet transplantation, the function of conformally coated islets was not compromised by encapsulation and was comparable to that of unencapsulated islets. We have further demonstrated that the structural support conferred by the coating materials protected islets from the loss of function experienced by uncoated islets during ex vivo culture.


Asunto(s)
Materiales Biocompatibles Revestidos/farmacología , Islotes Pancreáticos/efectos de los fármacos , Microfluídica/instrumentación , Alginatos/farmacología , Animales , Agregación Celular , Simulación por Computador , Diseño de Equipo , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/farmacología , Hidrodinámica , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Ratones , Ratones Endogámicos C57BL , Microesferas , Modelos Biológicos , Polietilenglicoles/farmacología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...