Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Sci Rep ; 13(1): 22778, 2023 12 20.
Article En | MEDLINE | ID: mdl-38123662

Growth differentiation factor 5 (GDF5), a BMP family member, is highly expressed in the surface layer of articular cartilage. The GDF5 gene is a key risk locus for osteoarthritis and Gdf5-deficient mice show abnormal joint development, indicating that GDF5 is essential in joint development and homeostasis. In this study, we aimed to identify transcription factors involved in Gdf5 expression by performing two-step screening. We first performed microarray analyses to find transcription factors specifically and highly expressed in the superficial zone (SFZ) cells of articular cartilage, and isolated 11 transcription factors highly expressed in SFZ cells but not in costal chondrocytes. To further proceed with the identification, we generated Gdf5-HiBiT knock-in (Gdf5-HiBiT KI) mice, by which we can easily and reproducibly monitor Gdf5 expression, using CRISPR/Cas9 genome editing. Among the 11 transcription factors, Hoxa10 clearly upregulated HiBiT activity in the SFZ cells isolated from Gdf5-HiBiT KI mice. Hoxa10 overexpression increased Gdf5 expression while Hoxa10 knockdown decreased it in the SFZ cells. Moreover, ChIP and promoter assays proved the direct regulation of Gdf5 expression by HOXA10. Thus, our results indicate the important role played by HOXA10 in Gdf5 regulation and the usefulness of Gdf5-HiBiT KI mice for monitoring Gdf5 expression.


Cartilage, Articular , Osteoarthritis , Animals , Mice , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Growth Differentiation Factor 5/genetics , Growth Differentiation Factor 5/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Transcription Factors/metabolism
2.
Sci Signal ; 15(758): eabl5304, 2022 11.
Article En | MEDLINE | ID: mdl-36318619

Proinflammatory cytokines play critical roles in the pathogenesis of joint diseases. Using a mass spectrometry-based cloning approach, we identified Semaphorin 4D (Sema4D) as an inflammatory cytokine that directly promoted cartilage destruction. Sema4d-deficient mice showed less cartilage destruction than wild-type mice in a model of rheumatoid arthritis. Sema4D induced a proinflammatory response in mouse articular chondrocytes characterized by the induction of proteolytic enzymes that degrade cartilage, such as matrix metalloproteinases (MMPs) and aggrecanases. The activation of Mmp13 and Mmp3 expression in articular chondrocytes by Sema4D did not depend on RhoA, a GTPase that mediates Sema4D-induced cytoskeletal rearrangements. Instead, it required NF-κB signaling and Ras-MEK-Erk1/2 signaling downstream of the receptors Plexin-B2 and c-Met and depended on the transcription factors IκBζ and C/EBPδ. Genetic and pharmacological blockade of these Sema4D signaling pathways inhibited MMP induction in chondrocytes and cartilage destruction in femoral head organ culture. Our results reveal a mechanism by which Sema4D signaling promotes cartilage destruction.


Cartilage, Articular , Mice , Animals , Chondrocytes , Antigens, CD , Inflammation , Cytokines
3.
J Bone Miner Metab ; 40(5): 723-734, 2022 Sep.
Article En | MEDLINE | ID: mdl-35763224

INTRODUCTION: Osteoarthritis is a common joint disease that causes destruction of articular cartilage and severe inflammation surrounding knee and hip joints. However, to date, effective therapeutic reagents for osteoarthritis have not been developed because the underlying molecular mechanisms are complex. Recent genetic findings suggest that a Wnt antagonist, frizzled-related protein B (FRZB), is a potential therapeutic target for osteoarthritis. Therefore, this study aimed to examine the transcriptional regulation of FRZB in chondrocytes. MATERIALS AND METHODS: Frzb/FRZB expression was assessed by RT-qPCR analyses in murine articular chondrocytes and SW1353 chondrocyte cell line. Overexpression and knockdown experiments were performed using adenovirus and lentivirus, respectively. Luciferase-reporter and chromatin immunoprecipitation assays were performed for determining transcriptional regulation. Protein-protein interaction was determined by co-immunoprecipitation analysis. RESULTS: Frzb was highly expressed in cartilages, especially within articular chondrocytes. Interleukin-1α markedly reduced Frzb expression in articular chondrocytes in association with cartilage destruction and increases in ADAM metallopeptidase with thrombospondin type 1 motif (Adamts) 4 and Adamts5 expression. Bone morphogenetic protein 2 (BMP2) increased FRZB expression in SW1353 cells through Smad signaling. Osterix and msh homeobox 2 (Msx2), both of which function as downstream transcription factors of BMP2, induced FRZB expression and upregulated its promoter activity. Co-immunoprecipitation results showed a physical interaction between Osterix and Msx2. Knockdown of either Osterix or Msx2 inhibited BMP2-dependent FRZB expression. Chromatin immunoprecipitation indicated a direct association of Osterix and Msx2 with the FRZB gene promoter. CONCLUSION: These results suggest that BMP2 regulates FRZB expression through Osterix and Msx2.


Cartilage, Articular , Osteoarthritis , Animals , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Gene Expression Regulation , Humans , Knee Joint , Mice , Osteoarthritis/genetics , Osteoarthritis/metabolism
4.
Int J Mol Sci ; 23(10)2022 May 11.
Article En | MEDLINE | ID: mdl-35628185

Inflammation is a pivotal response to a variety of stimuli, and inflammatory molecules such as cytokines have central roles in the pathogenesis of various diseases, including bone and joint diseases. Proinflammatory cytokines are mainly produced by immune cells and mediate inflammatory and innate immune responses. Additionally, proinflammatory cytokines accelerate bone resorption and cartilage destruction, resulting in the destruction of bone and joint tissues. Thus, proinflammatory cytokines are involved in regulating the pathogenesis of bone and joint diseases. Interleukin (IL)-1 is a representative inflammatory cytokine that strongly promotes bone and cartilage destruction, and elucidating the regulation of IL-1 will advance our understanding of the onset and progression of bone and joint diseases. IL-1 has two isoforms, IL-1α and IL-1ß. Both isoforms signal through the same IL-1 receptor type 1, but the activation mechanisms are completely different. In particular, IL-1ß is tightly regulated by protein complexes termed inflammasomes. Recent research using innovative technologies has led to a series of discoveries about inflammasomes. This review highlights the current understanding of the activation and function of the NLRP3 (NOD-like receptor family, pyrin domain-containing 3) inflammasome in bone and joint diseases.


Inflammasomes , Joint Diseases , Humans , Immunity, Innate , Inflammasomes/metabolism , Inflammation/metabolism , Joint Diseases/etiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
5.
Biochem Biophys Res Commun ; 533(1): 90-96, 2020 11 26.
Article En | MEDLINE | ID: mdl-32928505

G protein signaling plays important roles in skeletal development. G protein subunit ß1 (GNB1) is a component of the G protein complex and is associated with G protein signaling. In humans, GNB1 mutations cause global developmental and persistent growth delays and severe neurodevelopmental disability. Similarly, Gnb1-knockout (KO) mice display growth retardation with neural tube defects. These genetic studies raise the possibility that GNB1 regulates skeletal development. This study was designed to investigate the role of GNB1 in skeletal development using Gnb1-KO mice. Gnb1-KO mice showed dwarfism, shortening of limbs, and a decreased ossifying zone of long bones. In situ hybridization and RT-qPCR analyses revealed that Col10a1 and Mmp13 expression was reduced in long bones of Gnb1-KO mice, while Runx2, Osterix, Ihh, and Ppr expression levels were similar to those in wild-type littermates. Gnb1-KO-derived osteoblasts maintained calcification abilities and the expression levels of osteoblast marker genes were unaltered, indicating that osteoblast differentiation and function were not affected in Gnb1-KO mice. Taken together, our results show that GNB1 is required for the late stage of endochondral bone formation by regulating Col10a1 and Mmp13 expression.


GTP-Binding Protein beta Subunits/metabolism , Osteogenesis , Animals , Bone Development , Cells, Cultured , GTP-Binding Protein beta Subunits/genetics , Gene Expression Regulation, Developmental , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/cytology , Osteoblasts/metabolism
6.
Biomed Res Int ; 2014: 208539, 2014.
Article En | MEDLINE | ID: mdl-24895551

Plantagoside (5,7,4',5'-tetrahydroxyflavanone-3'-O-glucoside) and its aglycone (5,7,3',4',5'-pentahydroxyflavanone), isolated from a 50% ethanol extract of Plantago major seeds (Plantaginaceae), were established to be potent inhibitors of the Maillard reaction. These compounds also inhibited the formation of advanced glycation end products in proteins in physiological conditions and inhibited protein cross-linking glycation. These results indicate that P. major seeds have potential therapeutic applications in the prevention of diabetic complications.


Flavanones/pharmacology , Glucosides/pharmacology , Plantago/chemistry , Proteins/metabolism , Seeds/chemistry , Amino Acids/metabolism , Cross-Linking Reagents/metabolism , Flavanones/chemistry , Glucosides/chemistry , Glycation End Products, Advanced/metabolism , Glycosylation/drug effects , Hydrogen-Ion Concentration , Substrate Specificity/drug effects
...