Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
J Org Chem ; 86(23): 16268-16277, 2021 12 03.
Article En | MEDLINE | ID: mdl-34730980

An improved process for preparing tenuifolin (presenegenin 3-ß-d-glucopyranoside) from the root of Polygala senega L. was developed. A crude saponin mixture extracted from P. senega was subjected to hydrolysis, and the reactivity of compounds in the extract was controlled by utilizing the combination of a flow reactor and experimental design. In addition, column chromatography with HP 20, a synthetic polystyrenic adsorbent, allowed the gram-scale preparation of tenuifolin in a continuous manner with fewer steps. This approach shortens the total time required for gram-scale preparation from 16 to 5 h in a continuous manner while improving the yield from 0.59% to 2.08% (w/w).


Polygala , Diterpenes, Kaurane , Hydrolysis , Plant Roots , Temperature
2.
Chem Pharm Bull (Tokyo) ; 68(2): 140-149, 2020.
Article En | MEDLINE | ID: mdl-32009081

Previously, we reported that the c-Met inhibitory effect of Ephedra Herb extract (EHE) is derived from ingredients besides ephedrine alkaloids. Moreover, analgesic and anti-influenza activities of EHE and ephedrine alkaloids-free Ephedra Herb extract (EFE) have been reported recently. In this study, we examined the fractions containing c-Met kinase inhibitory activity from EHE and the fractions with analgesic and anti-influenza activities from EFE, and elucidated the structural characteristics of the active fractions. Significant c-Met kinase activity was observed in 30, 40, and 50% methanol (MeOH) eluate fractions obtained from water extract of EHE using Diaion HP-20 column chromatography. Similarly, 20 and 40% MeOH, and MeOH eluate fractions obtained from water extract of EFE were found to display analgesic and anti-influenza activities. Reversed phase-HPLC analysis of the active fractions commonly showed broad peaks characteristic of high-molecular mass condensed tannin. The active fractions were analyzed using 13C-NMR and decomposition reactions; the deduced structures of active components were high-molecular mass condensed tannins, which were mainly procyanidin B-type and partly procyanidin A-type, including pyrogallol- and catechol-type flavan 3-ols as extension and terminal units. HPLC and gel permeation chromatography (GPC) analyses estimated that the ratio of pyrogallol- and catechol-type was approximately 9 : 2, and the weight-average molecular weight based on the polystyrene standard was >45000. Furthermore, GPC-based analysis was proposed as the quality evaluation method for high-molecular mass condensed tannin in EHE and EFE.


Ephedra/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Alkaloids/chemistry , Alkaloids/pharmacology , Analgesics/chemistry , Analgesics/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biflavonoids/chemistry , Biflavonoids/pharmacology , Catechin/chemistry , Catechin/pharmacology , Cell Line, Tumor , Dogs , Ephedrine/chemistry , Ephedrine/pharmacology , Humans , Madin Darby Canine Kidney Cells , Male , Mice , Proanthocyanidins/chemistry , Proanthocyanidins/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors
3.
Yakugaku Zasshi ; 139(11): 1417-1425, 2019.
Article Ja | MEDLINE | ID: mdl-31685738

Ephedra Herb is defined in the 17th edition of the Japanese Pharmacopoeia (JP) as the terrestrial stem of Ephedra sinica Stapf., Ephedra intermedia Schrenk et C.A. Meyer, or Ephedra equisetina Bunge (Ephedraceae). The stems of Ephedra Herb contain greater than 0.7% ephedrine alkaloids (ephedrine and pseudoephedrine). Despite its high effectiveness, Ephedra Herb exert several adverse effects, including palpitation, excitation, insomnia, and dysuria. Both the primary and adverse effects of Ephedra Herb have been traditionally believed to be mediated by these ephedrine alkaloids. However, our study found that several pharmacological actions of Ephedra Herb were not associated with ephedrine alkaloids. We prepared an ephedrine alkaloid-free Ephedra Herb extract (EFE) by eliminating ephedrine alkaloids from Ephedra Herb extract (EHE) using ion-exchange column chromatography. EFE exerted analgesic, anti-influenza, and anticancer activities in the same manner as EHE. Moreover, EFE did not induce adverse effects due to ephedrine alkaloids, such as excitation, insomnia, and arrhythmias, and showed no toxicity. Furthermore, we evaluated the safety of EFE in healthy volunteers. The number of adverse event cases was higher in the EHE-treated group than in the EFE-treated group, although the difference was not significant. Our evidence suggested that EFE was safer than EHE.


Drugs, Chinese Herbal/adverse effects , Drugs, Chinese Herbal/chemistry , Ephedra/chemistry , Aged , Analgesics , Antineoplastic Agents, Phytogenic , Antiviral Agents , Chromatography, Ion Exchange , Drugs, Chinese Herbal/pharmacology , Ephedrine/adverse effects , Ephedrine/isolation & purification , Female , Humans , Male , Pseudoephedrine/adverse effects , Pseudoephedrine/isolation & purification , Safety
4.
Biol Pharm Bull ; 42(9): 1538-1544, 2019.
Article En | MEDLINE | ID: mdl-31474713

The analgesic effect of Ephedra Herb (EH) is believed to be derived from the anti-inflammatory action of pseudoephedrine (Pse). We recently reported that ephedrine alkaloids-free EH extract (EFE) attenuates formalin-induced pain to the same level as that achieved by EH extract (EHE), which suggests that the analgesic effect of EH may not be due to ephedrine alkaloids (EAs). To examine the contribution of EAs to the analgesic effect of EH, mice were injected with formalin to induce a biphasic pain reaction (first phase, 0-5 min; second phase, 10-45 min) at various time points after oral administration of the following test drugs: ephedrine (Eph), Pse, "authentic" EHE from Tsumura & Co. (EHE-Ts), EFE, and EHE that was used as the source of EFE (EHE-To). Biphasic pain was suppressed at 30 min after administration of Eph, EHE-Ts, and EHE-To. At 6 h after administration of EFE, EHE-To, and Pse-and at 4 to 6 h after administration of EHE-Ts-only second-phase pain was suppressed; however, the effect of Pse at 6 h was not significant. These results suggested that EHE has a biphasic analgesic effect against biphasic formalin-induced pain: in the first phase of analgesia (30 min after administration), biphasic pain is suppressed by Eph; in the second phase of analgesia (4-6 h after administration), second-phase pain is alleviated by constituents other than EAs, although Pse may partially contribute to the relief of second-phase pain.


Analgesics/therapeutic use , Ephedra/chemistry , Ephedrine/therapeutic use , Pain/drug therapy , Plant Extracts/therapeutic use , Pseudoephedrine/therapeutic use , Administration, Oral , Analgesics/isolation & purification , Animals , Disease Models, Animal , Male , Mice, Inbred Strains , Pain Measurement , Plant Extracts/isolation & purification , Rotarod Performance Test , Time Factors
5.
J Nat Med ; 72(2): 594, 2018 03.
Article En | MEDLINE | ID: mdl-29497901

The article Ephedra Herb extract activates/desensitizes transient receptor potential vanilloid 1 and reduces capsaicin-induced pain, written by Shunsuke Nakamori, Jun Takahashi, Sumiko Hyuga, Toshiko Tanaka-Kagawa, Hideto Jinno, Masashi Hyuga, Takashi Hakamatsuka, Hiroshi Odaguchi, Yukihiro Goda, Toshihiko Hanawa and Yoshinori Kobayashi, was originally published Online First without open access. After publication in volume 71, issue 1, page 105-113 the author decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to

6.
J Nat Med ; 72(1): 73-79, 2018 Jan.
Article En | MEDLINE | ID: mdl-28776291

As part of our continuing study of ephedrine alkaloids-free Ephedra Herb extract (EFE) in pursuit of its approval as a crude drug preparation, we identified two quantitative markers for the quality control of the manufacturing process of EFE and sought to establish cost-effective and simple methods for quantitative analyses. We analysed Ephedra Herb extracts grown in different habitats and collection years by liquid chromatography/high-resolution mass spectrometry (LC/HRMS) and detected two notable peaks common to each extract. These peaks were identified as vicenin-2 (1) and isovitexin 2″-O-rhamnoside (2). Quantitative analyses using the isocratic condition of LC/MS showed that the content percentages of 1 and 2 in EFE were 0.140-0.146% and 0.350-0.411%, respectively. We concluded that 1 and 2 were adequate quality control markers for quantitative analysis of EFE. Furthermore, we quantitatively analysed apigenin (3), an aglycon common to 1 and 2, and found that the conversion factors of 1 to 3 and 2 to 3 were 1.3 and 1.5, respectively. Therefore, we concluded that 3 was a secondary standard for quantifying the contents of 1 and 2 in EFE. A series of results obtained from this study will be valuable for the quality control of EFE.


Drug Compounding/methods , Ephedra/chemistry , Ephedrine/chemistry , Flavones/chemistry , Glycosides/metabolism , Ephedrine/analysis , Quality Control
7.
J Agric Food Chem ; 65(17): 3581-3588, 2017 May 03.
Article En | MEDLINE | ID: mdl-28398734

To construct a model formula to evaluate the thermogenetic effect of ginger (Zingiber officinale Roscoe) from the ingredient information, we established transient receptor potential vanilloid subtype 1 (TRPV1)-stimulating activity prediction models by using a partial least-squares projections to latent structures (PLS) regression analysis in which the ingredient data from liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and the stimulating activity values for TRPV1 receptor were used as explanatory and objective variables, respectively. By optimizing the peak extraction condition of the LC-HRMS data and the data preprocessing parameters of the PLS regression analysis, we succeeded in the construction of a TRPV1-stimulating activity prediction model with high precision ability. We then searched for the components responsible for the TRPV1-stimulating activity by analyzing the loading plot and s-plot of the model, and we identified [6]-gingerol (1) and hexahydrocurcumin (3) as TRPV1-stimulating activity components.


Plant Extracts/pharmacology , TRPV Cation Channels/analysis , Zingiber officinale/chemistry , Chromatography, High Pressure Liquid , Food Handling , HEK293 Cells , Humans , Least-Squares Analysis , Mass Spectrometry , TRPV Cation Channels/metabolism
8.
J Nat Med ; 71(1): 105-113, 2017 Jan.
Article En | MEDLINE | ID: mdl-27631428

Kampo medicines containing Ephedra Herb (EH) such as eppikajutsubuto and makyoyokukanto are used to treat myalgia, arthralgia, and rheumatism. The analgesic effects of these Kampo medicines are attributed to the anti-inflammatory action of EH. However, the molecular mechanism of the analgesic effect of EH remains to be clarified. In this study, the effects of EH extract (EHE) on transient receptor potential vanilloid 1 (TRPV1), a nonselective ligand-gated cation channel, which plays an essential role in nociception on sensory neurons, were investigated using mTRPV1/Flp-In293 cells (stable mouse TRPV1-expressing transfectants). Administration of EHE increased the intracellular Ca2+ concentration in these cells, which was inhibited by the TRPV1 antagonist, N-(4-tert-butylphenyl)-1,2-dihydro-4-(3-chloropyridine-2-yl) tetrahydropyrazine-1-carboxamide (BCTC), indicating that EHE activated TRPV1. Examination of EHE-induced nociceptive pain in vivo revealed that an intradermal (i.d.) injection of EHE into the hind paw of mice induced paw licking, a pain-related behavior, and that the extract increased paw licking times in a dose-dependent manner. The EHE-induced paw licking was also inhibited by BCTC. An i.d. injection of EHE 30 min before administration of capsaicin decreased capsaicin-induced paw licking times. Similarly, oral administration of the extract also suppressed capsaicin-induced paw licking, without affecting the physical performance of the mice. These results suggest that EHE suppresses capsaicin-induced paw licking by regulating TRPV1 activity. Thus, the antinociceptive effects of EHE seem to be produced by its direct action on sensory neurons through TRPV1.


Anti-Inflammatory Agents/pharmacology , Capsaicin/adverse effects , Ephedra/chemistry , Pain/chemically induced , Animals , Humans , Male , Mice , Pain Measurement , TRPV Cation Channels , Transfection
...