Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Biochem ; 124(4): 520-532, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36791261

RESUMEN

Gluten intolerance is associated with several disorders in the body. Although research has grown in recent years, the understanding of its impact on different tissues and the effects of physical exercise in mitigating health problems in the condition of gluten intolerance are still limited. Therefore, our objective was to test whether gliadin would affect metabolism and inflammation in liver tissue and whether aerobic physical exercise would mitigate the negative impacts of gliadin administration in rodents. Wistar rats were divided into exercised gliadin, gliadin, and control groups. Gliadin was administered by gavage from birth to 60 days of age. The rats in the exercised gliadin group performed an aerobic running exercise training protocol for 15 days. At the end of the experiments, physiological, histological, and molecular analyzes were performed in the study. Compared to the control group, the gliadin group had impaired weight gain and increased gluconeogenesis, lipogenesis, and inflammatory biomarkers in the liver. On the other hand, compared to the gliadin group, animals in the exercise-gliadin group had a recovery in body weight, improved insulin sensitivity, and a reduction in some gluconeogenesis, lipogenesis, and inflammatory biomarkers in the liver. In conclusion, our results revealed that the administration of gliadin from birth impaired weight gain and induced an increase in hepatic inflammatory cytokines, which was associated with an impairment of glycemic homeostasis in the liver, all of which were attenuated by adding aerobic exercise training in the gliadin group.


Asunto(s)
Enfermedad Celíaca , Gliadina , Ratas , Animales , Ratas Wistar , Enfermedad Celíaca/metabolismo , Aumento de Peso , Inflamación/inducido químicamente , Inflamación/terapia , Biomarcadores
2.
Cell Biochem Funct ; 41(1): 128-137, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36515301

RESUMEN

Dysfunction of the adipose tissue metabolism is considered as a significant hallmark of aging. It has been proposed that α-ß hydrolase domain containing 5 (ABHD5) plays a critical role in the control of lipolysis. However, the role of ABHD5 in the control of lipolysis during aging or exercise is unknown. Here we combined the experimental mouse model with transcriptomic analyzes by using murine and human databases to explore the role of ABHD5 in the adipose tissue during aging and in response to exercise. Transcriptomic data revealed a downregulation of Abhd5 messenger RNA levels in the subcutaneous white adipose tissue (scWAT) over time in individuals from 20 to 69 years old. Aged mice displayed dramatic reduction of ABHD5 protein content and lipolytic-related proteins in the scWAT. Interestingly, 4 weeks of high-intensity interval training increased ABHD5 protein level and restored the lipolytic pathway in the scWAT of aged mice. Altogether, our findings demonstrated that aging affects ABHD5 content in the adipose tissue of mice and humans. Conversely, exercise increases ABHD5 activity, recovering the lipolytic activity in aged mice.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa , Tejido Adiposo , Envejecimiento , Ejercicio Físico , Lipólisis , Adulto , Anciano , Animales , Humanos , Ratones , Persona de Mediana Edad , Adulto Joven , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Tejido Adiposo/enzimología , Envejecimiento/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo
3.
Sci Rep ; 11(1): 3813, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589652

RESUMEN

The maintenance of mitochondrial activity in hypothalamic neurons is determinant to the control of energy homeostasis in mammals. Disturbs in the mitochondrial proteostasis can trigger the mitonuclear imbalance and mitochondrial unfolded protein response (UPRmt) to guarantee the mitochondrial integrity and function. However, the role of mitonuclear imbalance and UPRmt in hypothalamic cells are unclear. Combining the transcriptomic analyses from BXD mice database and in vivo experiments, we demonstrated that physical training alters the mitochondrial proteostasis in the hypothalamus of C57BL/6J mice. This physical training elicited the mitonuclear protein imbalance, increasing the mtCO-1/Atp5a ratio, which was accompanied by high levels of UPRmt markers in the hypothalamus. Also, physical training increased the maximum mitochondrial respiratory capacity in the brain. Interestingly, the transcriptomic analysis across several strains of the isogenic BXD mice revealed that hypothalamic mitochondrial DNA-encoded genes were negatively correlated with body weight and several genes related to the orexigenic response. As expected, physical training reduced body weight and food intake. Interestingly, we found an abundance of mt-CO1, a mitochondrial DNA-encoded protein, in NPY-producing neurons in the lateral hypothalamus nucleus of exercised mice. Collectively, our data demonstrated that physical training altered the mitochondrial proteostasis and induced the mitonuclear protein imbalance and UPRmt in hypothalamic cells.


Asunto(s)
Metabolismo Energético/genética , Mitocondrias/genética , Proteostasis/genética , Respuesta de Proteína Desplegada/genética , Animales , Humanos , Hipotálamo/metabolismo , Ratones , Mitocondrias/metabolismo , Neuronas/metabolismo , Condicionamiento Físico Animal/fisiología
4.
J Anat ; 238(3): 743-750, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33094520

RESUMEN

The anatomy of the hypothalamus includes many nuclei and a complex network of neurocircuits. In this context, some hypothalamic nuclei reside closer to the blood-brain barrier, allowing communication with the peripheral organs through some molecules, such as leptin. Leptin is considered the main adipokine for energy homeostasis control. Furthermore, leptin signalling in the hypothalamus can communicate with insulin signalling through the activation of phosphoinositide 3-kinase (PI3k). Previous data suggest that isoforms of PI3k are necessary to mediate insulin action in the hypothalamus. However, obese animals show impairment in the central signalling of these hormones. Thus, in the current study, we evaluated the role of acute exercise in the leptin and insulin pathways in the hypothalamus, as well as in food intake control in obese mice. Although acute physical exercise was not able to modulate leptin signalling, this protocol suppressed the increase in the suppressor of cytokine signalling 3 (SOCS3) protein levels. In addition, acute exercise increased the content of PI3k-p110α protein in the hypothalamus. The exercised animals showed a strong tendency to reduction in cumulative food intake. For the first time, our results indicate physical exercise can increase PI3k-p110α protein content in the hypothalamus of obese mice and regulate food intake.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Obesidad/terapia , Condicionamiento Físico Animal/fisiología , Animales , Masculino , Ratones , Obesidad/metabolismo
5.
J Cell Biochem ; 119(7): 5885-5892, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29575149

RESUMEN

The accumulation of fatty acids in the liver associated with obesity condition is also known as nonalcoholic fatty liver disease (NAFLD). The impaired fat oxidation in obesity condition leads to increased hepatic fat accumulation and increased metabolic syndrome risk. On the other hand, physical exercise has been demonstrated as a potent strategy in the prevention of NAFLD. Also, these beneficial effects of exercise occur through different mechanisms. Recently, the Cdc2-like kinase (CLK2) protein was associated with the suppression of fatty acid oxidation and hepatic ketogenesis. Thus, obese animals demonstrated elevated levels of hepatic CLK2 and decreased fat acid oxidation. Here, we explored the effects of chronic physical exercise in the hepatic metabolism of obese mice. Swiss mice were distributed in Lean, Obese (fed with high-fat diet during 16 weeks) and Trained Obese group (fed with high-fat diet during 16 weeks and exercised (at 60% exhaustion velocity during 1 h/5 days/week) during 8 weeks. In our results, the obese animals showed insulin resistance, increased hepatic CLK2 content and increased hepatic fat accumulation compared to the Lean group. Otherwise, the chronic physical exercise improved insulin resistance state, prevented the increased CLK2 in the liver and attenuated hepatic fat accumulation. In summary, these data reveal a new protein involved in the prevention of hepatic fat accumulation after chronic physical exercise. More studies can evidence the negative role of CLK2 in the control of liver metabolism, contributing to the improvement of insulin resistance, obesity, and type 2 diabetes.


Asunto(s)
Resistencia a la Insulina , Lipogénesis , Hígado/enzimología , Obesidad/terapia , Condicionamiento Físico Animal , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Delgadez/fisiopatología , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/enzimología , Obesidad/etiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética
6.
Front Cell Neurosci ; 11: 313, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29062272

RESUMEN

Mitogen-activated Protein Kinase Phosphatase 3 (MKP-3) has been involved in the negative regulation of insulin signaling. The absence of MKP-3 is also associated with reduced adiposity, increased energy expenditure and improved insulin sensitivity. The MKP-3 is known as the main Erk1/2 phosphatase and FoxO1 activator, which has repercussions on the gluconeogenesis pathway and hyperglycemia in obese mice. Recently, we showed that MKP-3 overexpression decreases FoxO1 phosphorylation in the hypothalamus of lean mice. However, the hypothalamic interaction between MKP-3 and FoxO1 during obesity was not investigated yet. Here, the MKP-3 expression and the effects on food intake and energy expenditure, were investigated in high-fat diet-induced obese mice. The results indicate that obesity in mice increased the MKP-3 protein content in the hypothalamus. This hypothalamic upregulation led to an increase of food intake, adiposity, and body weight. Furthermore, the obese mice with increased MKP-3 showed an insulin signaling impairment with reduction of insulin-induced FoxO1 and Erk1/2 phosphorylation in the hypothalamus. Moreover, a bioinformatics analysis of data demonstrated that hypothalamic MKP-3 mRNA levels were positively correlated with body weight and negatively correlated to oxygen consumption (VO2) in BXD mice. Taken together, our study reports that obesity is associated with increased protein levels of hypothalamic MKP-3, which is related to the reduction of FoxO1 and Erk1/2 phosphorylation in the hypothalamus as well as to an increase in body weight and a reduction in energy expenditure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA