Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125743

RESUMEN

The unique amino acid hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] is exclusively formed on the translational regulator eukaryotic initiation factor 5A (eIF5A) via a process coined hypusination. Hypusination is mediated by two enzymes, deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH), and hypusinated eIF5A (eIF5AHyp) promotes translation elongation by alleviating ribosome pauses at amino acid motifs that cause structural constraints, and it also facilitates translation initiation and termination. Accordingly, eIF5AHyp has diverse biological functions that rely on translational control of its targets. Homozygous deletion of Eif5a, Dhps, or Dohh in mice leads to embryonic lethality, and heterozygous germline variants in EIF5A and biallelic variants in DHPS and DOHH are associated with rare inherited neurodevelopmental disorders, underscoring the importance of the hypusine circuit for embryonic and neuronal development. Given the pleiotropic effects of eIF5AHyp, a detailed understanding of the cell context-specific intrinsic roles of eIF5AHyp and of the chronic versus acute effects of eIF5AHyp inhibition is necessary to develop future strategies for eIF5AHyp-targeted therapy to treat various human health problems. Here, we review the most recent studies documenting the intrinsic roles of eIF5AHyp in different tissues/cell types under normal or pathophysiological conditions and discuss these unique aspects of eIF5AHyp-dependent translational control.


Asunto(s)
Factor 5A Eucariótico de Iniciación de Traducción , Lisina , Factores de Iniciación de Péptidos , Proteínas de Unión al ARN , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Animales , Lisina/metabolismo , Lisina/análogos & derivados , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Biosíntesis de Proteínas , Ratones
2.
Blood Cancer Discov ; 5(4): 276-297, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713018

RESUMEN

Despite advances in understanding the genetic abnormalities in myeloproliferative neoplasms (MPN) and the development of JAK2 inhibitors, there is an urgent need to devise new treatment strategies, particularly for patients with triple-negative (TN) myelofibrosis (MF) who lack mutations in the JAK2 kinase pathway and have very poor clinical outcomes. Here we report that MYC copy number gain and increased MYC expression frequently occur in TN-MF and that MYC-directed activation of S100A9, an alarmin protein that plays pivotal roles in inflammation and innate immunity, is necessary and sufficient to drive development and progression of MF. Notably, the MYC-S100A9 circuit provokes a complex network of inflammatory signaling that involves numerous hematopoietic cell types in the bone marrow microenvironment. Accordingly, genetic ablation of S100A9 or treatment with small molecules targeting the MYC-S100A9 pathway effectively ameliorates MF phenotypes, highlighting the MYC-alarmin axis as a novel therapeutic vulnerability for this subgroup of MPNs. Significance: This study establishes that MYC expression is increased in TN-MPNs via trisomy 8, that a MYC-S100A9 circuit manifest in these cases is sufficient to provoke myelofibrosis and inflammation in diverse hematopoietic cell types in the BM niche, and that the MYC-S100A9 circuit is targetable in TN-MPNs.


Asunto(s)
Calgranulina B , Cromosomas Humanos Par 8 , Trastornos Mieloproliferativos , Proteínas Proto-Oncogénicas c-myc , Trisomía , Cromosomas Humanos Par 8/genética , Humanos , Trisomía/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/patología , Animales , Ratones , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/patología , Mielofibrosis Primaria/metabolismo , Transducción de Señal/genética
3.
Blood Cancer Discov ; 4(4): 294-317, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37070973

RESUMEN

The MYC oncoprotein is activated in a broad spectrum of human malignancies and transcriptionally reprograms the genome to drive cancer cell growth. Given this, it is unclear if targeting a single effector of MYC will have therapeutic benefit. MYC activates the polyamine-hypusine circuit, which posttranslationally modifies the eukaryotic translation factor eIF5A. The roles of this circuit in cancer are unclear. Here we report essential intrinsic roles for hypusinated eIF5A in the development and maintenance of MYC-driven lymphoma, where the loss of eIF5A hypusination abolishes malignant transformation of MYC-overexpressing B cells. Mechanistically, integrating RNA sequencing, ribosome sequencing, and proteomic analyses revealed that efficient translation of select targets is dependent upon eIF5A hypusination, including regulators of G1-S phase cell-cycle progression and DNA replication. This circuit thus controls MYC's proliferative response, and it is also activated across multiple malignancies. These findings suggest the hypusine circuit as a therapeutic target for several human tumor types. SIGNIFICANCE: Elevated EIF5A and the polyamine-hypusine circuit are manifest in many malignancies, including MYC-driven tumors, and eIF5A hypusination is necessary for MYC proliferative signaling. Not-ably, this circuit controls an oncogenic translational program essential for the development and maintenance of MYC-driven lymphoma, supporting this axis as a target for cancer prevention and treatment. See related commentary by Wilson and Klein, p. 248. This article is highlighted in the In This Issue feature, p. 247.


Asunto(s)
Linfoma , Neoplasias , Humanos , Poliaminas/metabolismo , Proteómica
4.
Med Sci (Basel) ; 9(2)2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068137

RESUMEN

Polycationic polyamines are present in nearly all living organisms and are essential for mammalian cell growth and survival, and for development. These positively charged molecules are involved in a variety of essential biological processes, yet their underlying mechanisms of action are not fully understood. Several studies have shown both beneficial and detrimental effects of polyamines on human health. In cancer, polyamine metabolism is frequently dysregulated, and elevated polyamines have been shown to promote tumor growth and progression, suggesting that targeting polyamines is an attractive strategy for therapeutic intervention. In contrast, polyamines have also been shown to play critical roles in lifespan, cardiac health and in the development and function of the brain. Accordingly, a detailed understanding of mechanisms that control polyamine homeostasis in human health and disease is needed to develop safe and effective strategies for polyamine-targeted therapy.


Asunto(s)
Neoplasias , Poliaminas/metabolismo , Proliferación Celular , Homeostasis , Humanos , Neoplasias/tratamiento farmacológico
5.
Amino Acids ; 48(10): 2353-62, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27357307

RESUMEN

The unique amino acid hypusine is present in only two proteins in eukaryotic cells, eukaryotic translation initiation factor 5A-1 (eIF5A1), and eIF5A2, where it is covalently linked to the lysine-50 residue of these proteins via a post-translational modification coined hypusination. This unique modification is directed by two highly conserved and essential enzymes, deoxyhypusine synthase (DHPS), and deoxyhypusine hydroxylase (DOHH), which selectively use the polyamine spermidine as a substrate to generate hypusinated eIF5A. Notably, elevated levels of polyamines are a hallmark of most tumor types, and increased levels of polyamines can also be detected in the urine and blood of cancer patients. Further, in-clinic agents that block the function of key biosynthetic enzymes in the polyamine pathway markedly impair tumor progression and maintenance of the malignant state. Thus, the polyamine pathway is attractive as a prognostic, prevention and therapeutic target. As we review, recent advances in our understanding of the specific functions of hypusinated eIF5A and its role in tumorigenesis suggest that the polyamine-hypusine circuit is a high priority target for cancer therapeutics.


Asunto(s)
Poliaminas Biogénicas/biosíntesis , Lisina/análogos & derivados , Neoplasias/metabolismo , Neoplasias/prevención & control , Animales , Humanos , Lisina/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción
6.
Bioorg Med Chem Lett ; 23(15): 4374-80, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23787102

RESUMEN

The development of a series of potent and highly selective casein kinase 1δ/ε (CK1δ/ε) inhibitors is described. Starting from a purine scaffold inhibitor (SR-653234) identified by high throughput screening, we developed a series of potent and highly kinase selective inhibitors, including SR-2890 and SR-3029, which have IC50 ≤ 50 nM versus CK1δ. The two lead compounds have ≤100 nM EC50 values in MTT assays against the human A375 melanoma cell line and have physical, in vitro and in vivo PK properties suitable for use in proof of principle animal xenograft studies against human cancer cell lines.


Asunto(s)
Antineoplásicos/química , Caseína Cinasa 1 épsilon/antagonistas & inhibidores , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Sitios de Unión , Caseína Cinasa 1 épsilon/metabolismo , Quinasa Idelta de la Caseína/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular , Semivida , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Purinas/química , Purinas/farmacocinética , Purinas/uso terapéutico , Ratas , Relación Estructura-Actividad , Trasplante Heterólogo
7.
Genes Dev ; 25(21): 2242-7, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22056669

RESUMEN

Monoubiquitination of H2BK123 (H2BK123ub), catalyzed by Rad6/Bre1, is a transient histone modification with roles in transcription and is essential for establishing H3K4 and H3K79 trimethylations (H3K4me3 and H3K79me3). Here, we investigated the chromatin network around H2BK123ub by examining its localization and co-occurrence with its dependent marks as well as the transcription elongation mark H3K36me3 across the genome of Saccharomyces cerevisiae. In yeast, H2BK123ub is removed by the deubiquitinases Ubp8 and Ubp10, but their genomic target regions remain to be determined. Genome-wide maps of H2BK123ub in the absence of Ubp8 and Ubp10 revealed their distinct target loci, which were genomic sites enriched for H3K4me3 and H3K79me3, respectively. We propose an extended model of the H2BK123ub cross-talk by integrating existing relationships with the substrate specificities of Ubp8 and Ubp10 reported here.


Asunto(s)
Endopeptidasas/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Metilación de ADN , ADN de Hongos/metabolismo , Endopeptidasas/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética , Histonas/genética , Modelos Biológicos , Proteínas Nucleares/genética , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina Tiolesterasa/genética
8.
Mol Cell Biol ; 31(11): 2311-25, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21444721

RESUMEN

A screen of Saccharomyces cerevisiae histone alanine substitution mutants revealed that mutations in any of three adjacent residues, L97, Y98, or G99, near the C terminus of H4 led to a unique phenotype. The mutants grew slowly, became polyploid or aneuploid rapidly, and also lost chromosomes at a high rate, most likely because their kinetochores were not assembled properly. There was lower histone occupancy, not only in the centromeric region, but also throughout the genome for the H4 mutants. The mutants displayed genetic interactions with the genes encoding two different histone chaperones, Rtt106 and CAF-I. Affinity purification of Rtt106 and CAF-I from yeast showed that much more H4 and H3 were bound to these histone chaperones in the case of the H4 mutants than in the wild type. However, in vitro binding experiments showed that the H4 mutant proteins bound somewhat more weakly to Rtt106 than did wild-type H4. These data suggest that the H4 mutant proteins, along with H3, accumulate on Rtt106 and CAF-I in vivo because they cannot be deposited efficiently on DNA or passed on to the next step in the histone deposition pathway, and this contributes to the observed genome instability and growth defects.


Asunto(s)
Inestabilidad Genómica , Histonas/genética , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Cromatina , Citometría de Flujo , Genoma Fúngico , Histonas/química , Cinetocoros/ultraestructura , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Fenotipo , Ploidias , Unión Proteica , Ribonucleasas/genética , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
9.
Dev Cell ; 17(3): 301-3, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19758552

RESUMEN

Bivalently marked chromatin, containing both histone H3 lysine 4 (H3K4) and H3K27 trimethylation, is a hallmark of developmentally regulated paused promoters in mammalian embryonic stem cells. In this issue of Developmental Cell, Akkers et al. report that Xenopus tropicalis embryos transition through early development without the requirement for bivalently marked promoters.


Asunto(s)
Histonas/química , Lisina/química , Xenopus/embriología , Animales , Cromatina/química , Células Madre Embrionarias/citología , Humanos , Modelos Biológicos , Modelos Genéticos , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Transcripción Genética
10.
Mol Cell ; 35(6): 794-805, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-19782029

RESUMEN

The budding yeast CenH3 histone variant Cse4 localizes to centromeric nucleosomes and is required for kinetochore assembly and chromosome segregation. The exact composition of centromeric Cse4-containing nucleosomes is a subject of debate. Using unbiased biochemical, cell-biological, and genetic approaches, we have tested the composition of Cse4-containing nucleosomes. Using micrococcal nuclease-treated chromatin, we find that Cse4 is associated with the histones H2A, H2B, and H4, but not H3 or the nonhistone protein Scm3. Overexpression of Cse4 rescues the lethality of a scm3 deletion, indicating that Scm3 is not essential for the formation of functional centromeric chromatin. We also find that octameric Cse4 nucleosomes can be reconstituted in vitro. Furthermore, Cse4-Cse4 dimerization occurs in vivo at the centromeric nucleosome, and this requires the predicted Cse4-Cse4 dimerization interface. Taken together, our experimental evidence supports the model that the Cse4 nucleosome is an octamer, containing two copies each of Cse4, H2A, H2B, and H4.


Asunto(s)
Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Modelos Moleculares , Complejos Multiproteicos , Mutación , Conformación de Ácido Nucleico , Nucleosomas/genética , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
11.
J Cell Biol ; 186(3): 371-7, 2009 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-19667127

RESUMEN

Histone H2B monoubiquitination by Rad6/Bre1 is required for the trimethylation of both histone H3K4 and H3K79 by COMPASS and Dot1 methyltransferases, respectively. The dependency of methylation at H3K4 and H3K79 on the monoubiquitination of H2BK123 was recently challenged, and extragenic mutations in the strain background used for previous studies or epitope-tagged proteins were suggested to be the sources of this discrepancy. In this study, we show that H3K4 and H3K79 methylation is solely dependent on H2B monoubiquitination regardless of any additional alteration to the H2B sequence or genome. Furthermore, we report that Y131, one of the yeast histone H2A/H2B shuffle strains widely used for the last decade in the field of chromatin and transcription biology, carries a wild-type copy of each of the HTA2 and HTB2 genes under the GAL1/10 promoter on chromosome II. Therefore, we generated the entire histone H2A and H2B alanine-scanning mutant strains in another background, which does not express wild-type histones.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Ubiquitinación , Alanina/genética , Alanina/metabolismo , Histonas/genética , Metilación , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
Mol Cell ; 35(5): 626-41, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19682934

RESUMEN

To identify regulators involved in determining the differential pattern of H3K79 methylation by Dot1, we screened the entire yeast gene deletion collection by GPS for genes required for normal levels of H3K79 di- but not trimethylation. We identified the cell cycle-regulated SBF protein complex required for H3K79 dimethylation. We also found that H3K79 di- and trimethylation are mutually exclusive, with M/G1 cell cycle-regulated genes significantly enriched for H3K79 dimethylation. Since H3K79 trimethylation requires prior monoubiquitination of H2B, we performed genome-wide profiling of H2BK123 monoubiquitination and showed that H2BK123 monoubiquitination is not detected on cell cycle-regulated genes and sites containing H3K79me2, but is found on H3K79me3-containing regions. A screen for genes responsible for the establishment/removal of H3K79 dimethylation resulted in identification of NRM1 and WHI3, both of which impact the transcription by the SBF and MBF protein complexes, further linking the regulation of methylation status of H3K79 to the cell cycle.


Asunto(s)
Ciclo Celular , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ciclo Celular/genética , ADN Intergénico , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Fúngica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Lisina , Metilación , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Transcripción Genética , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación
13.
Nat Struct Mol Biol ; 15(8): 881-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18622391

RESUMEN

Methylation of histone 3 lysine 4 (H3K4) by yeast Set1-COMPASS requires prior monoubiquitination of histone H2B. To define whether other residues within the histones are also required for H3K4 methylation, we systematically generated a complete library of the alanine substitutions of all of the residues of the four core histones in Saccharomyces cerevisiae. From this study we discovered that 18 residues within the four histones are essential for viability on complete growth media. We also identified several cis-regulatory residues on the histone H3 N-terminal tail, including histone H3 lysine 14 (H3K14), which are required for normal levels of H3K4 trimethylation. Several previously uncharacterized trans-regulatory residues on histones H2A and H2B form a patch on nucleosomes and are required for methylation mediated by COMPASS. This library will be a valuable tool for defining the role of histone residues in processes requiring chromatin.


Asunto(s)
Biblioteca de Genes , Histonas/química , Histonas/genética , Mutación , Nucleosomas/metabolismo , Aminoácidos/química , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Genómica , Histonas/metabolismo , Metilación , Plásmidos/metabolismo , Proteómica/métodos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Nucleic Acids Res ; 35(13): 4313-21, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17576692

RESUMEN

Chromatin in eukaryotic cells is folded into higher order structures of folded nucleosome filaments, and DNA damage occurs at all levels of this structural hierarchy. However, little is known about the impact of higher order folding on DNA repair enzymes. We examined the catalytic activities of purified human base excision repair (BER) enzymes on uracil-containing oligonucleosome arrays, which are folded primarily into 30 nm structures when incubated in repair reaction buffers. The catalytic activities of uracil DNA glycosylase (UDG) and apyrimidinic/apurinic endonuclease (APE) digest G:U mismatches to completion in the folded oligonucleosomes without requiring significant disruption. In contrast, DNA polymerase beta (Pol beta) synthesis is inhibited in a major fraction ( approximately 80%) of the oligonucleosome array, suggesting that single strand nicks in linker DNA are far more accessible to Pol beta in highly folded oligonucleosomes. Importantly, this barrier in folded oligonucleosomes is removed by purified chromatin remodeling complexes. Both ISW1 and ISW2 from yeast significantly enhance Pol beta accessibility to the refractory nicked sites in oligonucleosomes. These results indicate that the initial steps of BER (UDG and APE) act efficiently on highly folded oligonucleosome arrays, and chromatin remodeling may be required for the latter steps of BER in intact chromatin.


Asunto(s)
Ensamble y Desensamble de Cromatina , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Nucleosomas/química , Uracil-ADN Glicosidasa/metabolismo , Adenosina Trifosfatasas/metabolismo , Disparidad de Par Base , ADN Polimerasa beta/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Conformación de Ácido Nucleico , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Uracilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA