Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37894066

RESUMEN

Anthocyanins (Acn) have been reported to have preventive effects on Western diet (WD)-induced non-alcoholic fatty liver disease (NAFLD). However, the amount of Acn that reached the bloodstream were less than 1%, suggesting that anthocyanin metabolites (Acn-M) in the gut may contribute to their in vivo effects. This study is focused on a gut microbiota investigation to elucidate the effect of two major Acn-M, protocatechuic acid (PC) and phloroglucinol carboxaldehyde (PG), on NAFLD prevention. C57BL/6N male mice were divided into five groups and fed with a normal diet (ND), WD, WD + 0.5% PC, WD + 0.5% PG and WD + a mixture of 0.25% PC + 0.25% PG (CG) for 12 weeks. The results revealed that WD-fed mice showed a significant increase in final body weight, epididymis fat weight, liver weight and fat accumulation rate, serum total cholesterol, alanine aminotransferase, monocyte chemoattractant protein 1, and 2-thiobarbituric acid reactive substances. At the same time, these indices were significantly decreased by Acn-M in the order of PG, CG > PC. In particular, PG significantly decreased serum glucose and insulin resistance. Gut microbiome analysis revealed that PG significantly increased the relative abundance of Parabacteroides, Prevotella, Prevotella/Bacteroides ratio, and upregulated glucose degradation pathway. Interestingly, the co-occurrence networks of Lachnospiraceae and Desulfovibrionaceae in the PC and PG groups were similar to the ND group and different to WD group. These data suggest that PC and PG were able to recover the gut microbiome networks and functions from dysbiosis caused by WD. Therefore, PG might act as a master metabolite for anthocyanins and prevent WD-induced NAFLD and gut dysbiosis.

2.
Foods ; 12(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37444313

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract. To explore the preventive effects of dietary foods on IBD, we evaluated the effects of the traditional Japanese fermented beverage "Amazake" on gut barrier function in this study. Black koji Amazake (BA) derived from Aspergillus luchuensis MEM-C strain and yellow koji Amazake (YA) derived from Aspergillus oryzae were made in this study, and their nutrients were analyzed. Mice with mild gut barrier dysfunction induced by Western diet were administered with 10% of each Amazake for two months. Mice gut microbiota were analyzed by 16S rRNA gene sequencing. BA contained a higher amount of isomaltooligosaccharides, citric acid, and ferulic acid than YA. The animal data revealed that BA significantly induced the expressions of antioxidant factors and enzymes such as NF-E2-related factor 2 (Nfr2), heme oxygenase 1 (HO1), and superoxide dismutase-2 (SOD-2). The gut barrier protein, occludin, and fecal immunoglobulin A (IgA) were also significantly enhanced by BA. Furthermore, the levels of serum endotoxin and hepatic monocyte chemotactic protein-1 (MCP-1) were decreased in both the BA and YA groups. In gut microbiota, Lachnospiraceae was increased by BA while Akkermansia muciniphilia was increased by YA. Black koji Amazake contained a higher amount of isomaltooligosaccharides, citric acid, and ferulic acid than yellow koji Amazake and contributed to protecting gut barrier function to reduce endotoxin intrusion and inflammation.

3.
Nutrients ; 12(11)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114130

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a manifestation of metabolic syndrome closely linked to dyslipidemia and gut microbiome dysbiosis. Bilberry anthocyanins (BA) have been reported to have preventive effects against metabolic syndrome. This study aimed to investigate the protective effects and mechanisms of BA in a Western diet (WD)-induced mouse model. The results revealed that supplementation with BA attenuated the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), low-density lipoprotein cholesterol (LDL-c), fat content in liver, 2-thiobarbituric acid reactive substances (TBARS) and α-smooth muscle actin (α-SMA) caused by WD. Furthermore, gut microbiota characterized by 16S rRNA sequencing revealed that BA reduced remarkably the ratio of Firmicutes/Bacteroidetes (F/B) and modified gut microbiome. In particular, BA increased the relative abundance of g_Akkermansia and g_Parabacteroides. Taken together, our data demonstrated that BA might ameliorate WD-induced NAFLD by attenuating dyslipidemia and gut microbiome dysbiosis.


Asunto(s)
Antocianinas/farmacología , Disbiosis/terapia , Dislipidemias/terapia , Microbioma Gastrointestinal/genética , Enfermedad del Hígado Graso no Alcohólico/terapia , Vaccinium myrtillus/química , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , LDL-Colesterol/sangre , Dieta Occidental/efectos adversos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Disbiosis/sangre , Disbiosis/complicaciones , Dislipidemias/sangre , Dislipidemias/microbiología , Hígado/metabolismo , Síndrome Metabólico/microbiología , Síndrome Metabólico/prevención & control , Ratones , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/microbiología , ARN Ribosómico 16S/metabolismo
4.
Molecules ; 23(12)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563142

RESUMEN

Polyphenols from the Lonicera caerulea L. berry have shown protective effects on experimental non-alcoholic fatty liver disease (NAFLD) in our previous studies. As endotoxins from gut bacteria are considered to be the major trigger of inflammation in NAFLD, this study aims to clarify the regulatory effects of L. caerulea L. berry polyphenols (LCBP) on gut microbiota in a high fat diet (HFD)-induced mouse model. C57BL/6N mice were fed with a normal diet, HFD, or HFD containing 0.5⁻1% of LCBP for 45 days. The results revealed that supplementation with LCBP decreased significantly the levels of IL-2, IL-6, MCP-1, and TNF-α in serum, as well as endotoxin levels in both serum and liver in HFD-fed mice. Fecal microbiota characterization by high throughput 16S rRNA gene sequencing revealed that a HFD increased the Firmicutes/Bacteroidetes ratio, and LCBP reduced this ratio by increasing the relative abundance of Bacteroides, Parabacteroides, and another two undefined bacterial genera belonging to the order of Bacteroidales and family of Rikenellaceae, and also by decreasing the relative abundance of six bacterial genera belonging to the phylum Firmicutes, including Staphylococcus, Lactobacillus, Ruminococcus, and Oscillospira. These data demonstrated that LCBP potentially attenuated inflammation in NAFLD through modulation of gut microbiota, especially the ratio of Firmicutes to Bacteroidetes.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal/efectos de los fármacos , Lonicera/química , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Extractos Vegetales/farmacología , Polifenoles/farmacología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Endotoxinas/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Extractos Vegetales/química , Polifenoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA